Suppr超能文献

人工智能在儿科抗微生物药物耐药性斗争中的作用。

Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics.

作者信息

Fanelli Umberto, Pappalardo Marco, Chinè Vincenzo, Gismondi Pierpacifico, Neglia Cosimo, Argentiero Alberto, Calderaro Adriana, Prati Andrea, Esposito Susanna

机构信息

Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.

Microbiology and Virology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.

出版信息

Antibiotics (Basel). 2020 Nov 1;9(11):767. doi: 10.3390/antibiotics9110767.

Abstract

Artificial intelligence (AI) is a field of science and engineering concerned with the computational understanding of what is commonly called intelligent behavior. AI is extremely useful in many human activities including medicine. The aim of our narrative review is to show the potential role of AI in fighting antimicrobial resistance in pediatric patients. We searched for PubMed articles published from April 2010 to April 2020 containing the keywords "artificial intelligence", "machine learning", "antimicrobial resistance", "antimicrobial stewardship", "pediatric", and "children", and we described the different strategies for the application of AI in these fields. Literature analysis showed that the applications of AI in health care are potentially endless, contributing to a reduction in the development time of new antimicrobial agents, greater diagnostic and therapeutic appropriateness, and, simultaneously, a reduction in costs. Most of the proposed AI solutions for medicine are not intended to replace the doctor's opinion or expertise, but to provide a useful tool for easing their work. Considering pediatric infectious diseases, AI could play a primary role in fighting antibiotic resistance. In the pediatric field, a greater willingness to invest in this field could help antimicrobial stewardship reach levels of effectiveness that were unthinkable a few years ago.

摘要

人工智能(AI)是一个科学与工程领域,专注于对通常所说的智能行为进行计算理解。人工智能在包括医学在内的许多人类活动中都极为有用。我们这篇叙述性综述的目的是展示人工智能在对抗儿科患者抗菌药物耐药性方面的潜在作用。我们在PubMed上搜索了2010年4月至2020年4月发表的包含关键词“人工智能”“机器学习”“抗菌药物耐药性”“抗菌药物管理”“儿科”和“儿童”的文章,并描述了人工智能在这些领域应用的不同策略。文献分析表明,人工智能在医疗保健中的应用潜力无穷,有助于缩短新型抗菌药物的研发时间,提高诊断和治疗的合理性,同时降低成本。大多数为医学提出的人工智能解决方案并非旨在取代医生的意见或专业知识,而是为减轻他们的工作负担提供有用的工具。考虑到儿科传染病,人工智能在对抗抗生素耐药性方面可发挥主要作用。在儿科领域,加大对该领域的投资意愿有助于抗菌药物管理达到几年前难以想象的有效水平。

相似文献

1
Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics.
Antibiotics (Basel). 2020 Nov 1;9(11):767. doi: 10.3390/antibiotics9110767.
2
Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.
Transfus Apher Sci. 2018 Jun;57(3):422-424. doi: 10.1016/j.transci.2018.05.004. Epub 2018 May 9.
3
Application of Artificial Intelligence in Combating High Antimicrobial Resistance Rates.
Antibiotics (Basel). 2022 Jun 8;11(6):784. doi: 10.3390/antibiotics11060784.
4
Brave New World of Artificial Intelligence: Its Use in Antimicrobial Stewardship-A Systematic Review.
Antibiotics (Basel). 2024 Mar 28;13(4):307. doi: 10.3390/antibiotics13040307.
5
A Review of Applications of Artificial Intelligence in Gastroenterology.
Cureus. 2021 Nov 3;13(11):e19235. doi: 10.7759/cureus.19235. eCollection 2021 Nov.
7
Overview of artificial intelligence in medicine.
J Family Med Prim Care. 2019 Jul;8(7):2328-2331. doi: 10.4103/jfmpc.jfmpc_440_19.
8
Explainable and Interpretable Machine Learning for Antimicrobial Stewardship: Opportunities and Challenges.
Clin Ther. 2024 Jun;46(6):474-480. doi: 10.1016/j.clinthera.2024.02.010. Epub 2024 Mar 21.
9
Artificial intelligence and machine learning in respiratory medicine.
Expert Rev Respir Med. 2020 Jun;14(6):559-564. doi: 10.1080/17476348.2020.1743181. Epub 2020 Mar 17.
10
Using Machine Learning to Predict Antimicrobial Resistance-A Literature Review.
Antibiotics (Basel). 2023 Feb 24;12(3):452. doi: 10.3390/antibiotics12030452.

引用本文的文献

2
Challenges and Opportunities: Interplay between Infectious Disease and Antimicrobial Resistance in Medical Device Surface Applications.
ACS Omega. 2025 May 20;10(21):20968-20983. doi: 10.1021/acsomega.5c01011. eCollection 2025 Jun 3.
3
The Role of Artificial Intelligence in Pediatric Intensive Care: A Systematic Review.
Cureus. 2025 Mar 6;17(3):e80142. doi: 10.7759/cureus.80142. eCollection 2025 Mar.
4
State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting.
Antibiotics (Basel). 2025 Jan 27;14(2):132. doi: 10.3390/antibiotics14020132.
7
The Role of ChatGPT and AI Chatbots in Optimizing Antibiotic Therapy: A Comprehensive Narrative Review.
Antibiotics (Basel). 2025 Jan 9;14(1):60. doi: 10.3390/antibiotics14010060.
8
Tackling the Antimicrobial Resistance "Pandemic" with Machine Learning Tools: A Summary of Available Evidence.
Microorganisms. 2024 Apr 23;12(5):842. doi: 10.3390/microorganisms12050842.
9
Specific and Nonspecific Effects of Influenza Vaccines.
Vaccines (Basel). 2024 Apr 5;12(4):384. doi: 10.3390/vaccines12040384.
10
Cryosphere: a frozen home of microbes and a potential source for drug discovery.
Arch Microbiol. 2024 Mar 28;206(4):196. doi: 10.1007/s00203-024-03899-4.

本文引用的文献

1
Improving the Quality of Hospital Antibiotic Use: Impact on Multidrug-Resistant Bacterial Infections in Children.
Front Pharmacol. 2020 May 15;11:745. doi: 10.3389/fphar.2020.00745. eCollection 2020.
2
Artificial intelligence and the future of global health.
Lancet. 2020 May 16;395(10236):1579-1586. doi: 10.1016/S0140-6736(20)30226-9.
3
A Deep Learning Approach to Antibiotic Discovery.
Cell. 2020 Feb 20;180(4):688-702.e13. doi: 10.1016/j.cell.2020.01.021.
5
Can Artificial Intelligence Improve the Management of Pneumonia.
J Clin Med. 2020 Jan 17;9(1):248. doi: 10.3390/jcm9010248.
6
VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning.
PLoS Comput Biol. 2020 Jan 13;16(1):e1007511. doi: 10.1371/journal.pcbi.1007511. eCollection 2020 Jan.
7
Machine learning for clinical decision support in infectious diseases: a narrative review of current applications.
Clin Microbiol Infect. 2020 May;26(5):584-595. doi: 10.1016/j.cmi.2019.09.009. Epub 2019 Sep 17.
8
Personal clinical history predicts antibiotic resistance of urinary tract infections.
Nat Med. 2019 Jul;25(7):1143-1152. doi: 10.1038/s41591-019-0503-6. Epub 2019 Jul 4.
9
Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration.
Ophthalmol Retina. 2018 Jan;2(1):24-30. doi: 10.1016/j.oret.2017.03.015. Epub 2017 May 31.
10
Application of artificial intelligence in pediatrics: past, present and future.
World J Pediatr. 2019 Apr;15(2):105-108. doi: 10.1007/s12519-019-00255-1. Epub 2019 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验