Suppr超能文献

定义新的化学空间,以促进药物穿透革兰氏阴性菌。

Defining new chemical space for drug penetration into Gram-negative bacteria.

机构信息

Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA.

出版信息

Nat Chem Biol. 2020 Dec;16(12):1293-1302. doi: 10.1038/s41589-020-00674-6. Epub 2020 Nov 16.

Abstract

We live in the era of antibiotic resistance, and this problem will progressively worsen if no new solutions emerge. In particular, Gram-negative pathogens present both biological and chemical challenges that hinder the discovery of new antibacterial drugs. First, these bacteria are protected from a variety of structurally diverse drugs by a low-permeability barrier composed of two membranes with distinct permeability properties, in addition to active drug efflux, making this cell envelope impermeable to most compounds. Second, chemical libraries currently used in drug discovery contain few compounds that can penetrate Gram-negative bacteria. As a result of these challenges, intensive screening campaigns have led to few successes, highlighting the need for new approaches to identify regions of chemical space that are specifically relevant to antibacterial drug discovery. Herein we provide an overview of emerging insights into this problem and outline a general approach to addressing it using prospective analysis of chemical libraries for the ability of compounds to accumulate in Gram-negative bacteria. The overall goal is to develop robust cheminformatic tools to predict Gram-negative permeation and efflux, which can then be used to guide medicinal chemistry campaigns and the design of antibacterial discovery libraries.

摘要

我们生活在抗生素耐药性的时代,如果没有新的解决方案出现,这个问题将会逐步恶化。特别是革兰氏阴性病原体既具有生物学挑战,也具有化学挑战,这阻碍了新的抗菌药物的发现。首先,这些细菌受到由两层具有不同通透性特性的膜组成的低通透性屏障的保护,除了主动药物外排,使这种细胞膜对大多数化合物都不可渗透。其次,目前用于药物发现的化学文库中只有很少的化合物可以穿透革兰氏阴性菌。由于这些挑战,密集的筛选活动收效甚微,这凸显了需要新的方法来识别与抗菌药物发现特别相关的化学空间区域。本文概述了这一问题的新见解,并概述了一种使用化合物在革兰氏阴性菌中积累能力的化学文库的前瞻性分析来解决这一问题的一般方法。总体目标是开发强大的计算化学工具来预测革兰氏阴性菌的渗透和外排,然后可以将这些工具用于指导药物化学研究和抗菌药物发现文库的设计。

相似文献

1
Defining new chemical space for drug penetration into Gram-negative bacteria.
Nat Chem Biol. 2020 Dec;16(12):1293-1302. doi: 10.1038/s41589-020-00674-6. Epub 2020 Nov 16.
3
Breaching the Barrier: Quantifying Antibiotic Permeability across Gram-negative Bacterial Membranes.
J Mol Biol. 2019 Aug 23;431(18):3531-3546. doi: 10.1016/j.jmb.2019.03.031. Epub 2019 Apr 5.
4
New Multidrug Efflux Inhibitors for Gram-Negative Bacteria.
mBio. 2020 Jul 14;11(4):e01340-20. doi: 10.1128/mBio.01340-20.
5
Permeability barriers of Gram-negative pathogens.
Ann N Y Acad Sci. 2020 Jan;1459(1):5-18. doi: 10.1111/nyas.14134. Epub 2019 Jun 4.
6
Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria.
Eur J Pharm Biopharm. 2015 Sep;95(Pt A):63-7. doi: 10.1016/j.ejpb.2015.05.006. Epub 2015 May 30.
7
How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics.
Chem Rev. 2021 May 12;121(9):5158-5192. doi: 10.1021/acs.chemrev.0c01213. Epub 2021 Mar 16.
8
High-Throughput Flow Cytometry Screening of Multidrug Efflux Systems.
Methods Mol Biol. 2018;1700:293-318. doi: 10.1007/978-1-4939-7454-2_16.
9
Understanding efflux in Gram-negative bacteria: opportunities for drug discovery.
Expert Opin Drug Discov. 2012 Jul;7(7):633-42. doi: 10.1517/17460441.2012.688949. Epub 2012 May 19.
10
The Gram-negative permeability barrier: tipping the balance of the in and the out.
mBio. 2023 Dec 19;14(6):e0120523. doi: 10.1128/mbio.01205-23. Epub 2023 Oct 20.

引用本文的文献

3
Human gut bacteria bioaccumulate per- and polyfluoroalkyl substances.
Nat Microbiol. 2025 Jul;10(7):1630-1647. doi: 10.1038/s41564-025-02032-5. Epub 2025 Jul 1.
4
The power of DNA-encoded chemical libraries in the battle against drug-resistant bacteria.
RSC Adv. 2025 Apr 30;15(18):14001-14029. doi: 10.1039/d5ra00016e. eCollection 2025 Apr 28.
5
Novel Antibacterial Approaches and Therapeutic Strategies.
Antibiotics (Basel). 2025 Apr 15;14(4):404. doi: 10.3390/antibiotics14040404.
6
Real Way to Target Gram-Negative Pathogens: Discovery of a Novel Antibiotic Class.
J Med Chem. 2025 May 22;68(10):10128-10138. doi: 10.1021/acs.jmedchem.5c00112. Epub 2025 Mar 31.
7
Identification of chemical features that influence mycomembrane permeation and antitubercular activity.
bioRxiv. 2025 Feb 27:2025.02.27.640664. doi: 10.1101/2025.02.27.640664.
9
Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens.
NPJ Antimicrob Resist. 2023 Dec 20;1(1):17. doi: 10.1038/s44259-023-00016-1.
10
In Vivo Activity Profiling of Biosynthetic Darobactin D22 against Critical Gram-Negative Pathogens.
ACS Infect Dis. 2024 Dec 13;10(12):4337-4346. doi: 10.1021/acsinfecdis.4c00687. Epub 2024 Nov 20.

本文引用的文献

1
Gram-Negative Antibiotic Active Through Inhibition of an Essential Riboswitch.
J Am Chem Soc. 2020 Jun 17;142(24):10856-10862. doi: 10.1021/jacs.0c04427. Epub 2020 Jun 8.
2
Antimicrobial Resistance in ESKAPE Pathogens.
Clin Microbiol Rev. 2020 May 13;33(3). doi: 10.1128/CMR.00181-19. Print 2020 Jun 17.
3
Drug Permeation against Efflux by Two Transporters.
ACS Infect Dis. 2020 Apr 10;6(4):747-758. doi: 10.1021/acsinfecdis.9b00510. Epub 2020 Feb 25.
4
Discovery of multidrug efflux pump inhibitors with a novel chemical scaffold.
Biochim Biophys Acta Gen Subj. 2020 Jun;1864(6):129546. doi: 10.1016/j.bbagen.2020.129546. Epub 2020 Feb 4.
5
Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria.
Nat Rev Microbiol. 2020 Mar;18(3):164-176. doi: 10.1038/s41579-019-0294-2. Epub 2019 Dec 2.
6
Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens.
Nat Microbiol. 2020 Jan;5(1):67-75. doi: 10.1038/s41564-019-0604-5. Epub 2019 Nov 18.
7
Flow Cytometric Analysis of Efflux by Dye Accumulation.
Front Microbiol. 2019 Oct 4;10:2319. doi: 10.3389/fmicb.2019.02319. eCollection 2019.
8
Recent achievements and current trajectories of diversity-oriented synthesis.
Curr Opin Chem Biol. 2020 Jun;56:1-9. doi: 10.1016/j.cbpa.2019.08.008. Epub 2019 Oct 15.
9
Efflux Pumps of Burkholderia thailandensis Control the Permeability Barrier of the Outer Membrane.
Antimicrob Agents Chemother. 2019 Sep 23;63(10). doi: 10.1128/AAC.00956-19. Print 2019 Oct.
10
Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties.
Sci Rep. 2019 Jul 4;9(1):9696. doi: 10.1038/s41598-019-46100-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验