Deargen, Inc., Daejeon 34051, Korea.
Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Korea.
Viruses. 2020 Nov 18;12(11):1325. doi: 10.3390/v12111325.
Previously, our group predicted commercially available Food and Drug Administration (FDA) approved drugs that can inhibit each step of the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using a deep learning-based drug-target interaction model called Molecule Transformer-Drug Target Interaction (MT-DTI). Unfortunately, additional clinically significant treatment options since the approval of remdesivir are scarce. To overcome the current coronavirus disease 2019 (COVID-19) more efficiently, a treatment strategy that controls not only SARS-CoV-2 replication but also the host entry step should be considered. In this study, we used MT-DTI to predict FDA approved drugs that may have strong affinities for the angiotensin-converting enzyme 2 (ACE2) receptor and the transmembrane protease serine 2 (TMPRSS2) which are essential for viral entry to the host cell. Of the 460 drugs with of less than 100 nM for the ACE2 receptor, 17 drugs overlapped with drugs that inhibit the interaction of ACE2 and SARS-CoV-2 spike reported in the NCATS OpenData portal. Among them, enalaprilat, an ACE inhibitor, showed a value of 1.5 nM against the ACE2. Furthermore, three of the top 30 drugs with strong affinity prediction for the TMPRSS2 are anti-hepatitis C virus (HCV) drugs, including ombitasvir, daclatasvir, and paritaprevir. Notably, of the top 30 drugs, AT1R blocker eprosartan and neuropsychiatric drug lisuride showed similar gene expression profiles to potential TMPRSS2 inhibitors. Collectively, we suggest that drugs predicted to have strong inhibitory potencies to ACE2 and TMPRSS2 through the DTI model should be considered as potential drug repurposing candidates for COVID-19.
此前,我们的团队使用一种名为分子转换器-药物靶点相互作用(MT-DTI)的基于深度学习的药物靶点相互作用模型,预测了可抑制严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)复制的各个步骤的市售食品和药物管理局(FDA)批准药物。不幸的是,自瑞德西韦批准以来,额外的具有临床意义的治疗选择很少。为了更有效地应对当前的 2019 年冠状病毒病(COVID-19),应考虑一种不仅可以控制 SARS-CoV-2 复制,而且可以控制宿主进入步骤的治疗策略。在这项研究中,我们使用 MT-DTI 预测了可能对血管紧张素转换酶 2(ACE2)受体和跨膜丝氨酸蛋白酶 2(TMPRSS2)具有很强亲和力的 FDA 批准药物,这对于病毒进入宿主细胞至关重要。在 460 种对 ACE2 受体的亲和力小于 100 nM 的药物中,有 17 种药物与 NCATS OpenData 门户中报道的抑制 ACE2 与 SARS-CoV-2 刺突相互作用的药物重叠。其中,ACE 抑制剂依那普利拉对 ACE2 的 值为 1.5 nM。此外,对 TMPRSS2 具有强亲和力预测的前 30 种药物中有 3 种是抗丙型肝炎病毒(HCV)药物,包括奥比他韦、达卡他韦和帕利他韦。值得注意的是,在这 30 种药物中,AT1R 阻滞剂厄贝沙坦和神经精神药物利舒肽与潜在的 TMPRSS2 抑制剂具有相似的基因表达谱。总的来说,我们建议通过 DTI 模型预测对 ACE2 和 TMPRSS2 具有强抑制作用的药物应被视为 COVID-19 的潜在药物再利用候选药物。