Suppr超能文献

抑制 3-磷酸肌醇依赖性蛋白激酶 1(PDK1)可以逆转人真皮成纤维细胞的细胞衰老。

Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts.

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

R&D Unit, Amorepacific Corporation, 17074 Gyeonggi-do, Republic of Korea.

出版信息

Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31535-31546. doi: 10.1073/pnas.1920338117. Epub 2020 Nov 23.

Abstract

Cellular senescence is defined as a stable, persistent arrest of cell proliferation. Here, we examine whether senescent cells can lose senescence hallmarks and reenter a reversible state of cell-cycle arrest (quiescence). We constructed a molecular regulatory network of cellular senescence based on previous experimental evidence. To infer the regulatory logic of the network, we performed phosphoprotein array experiments with normal human dermal fibroblasts and used the data to optimize the regulatory relationships between molecules with an evolutionary algorithm. From ensemble analysis of network models, we identified 3-phosphoinositide-dependent protein kinase 1 (PDK1) as a promising target for inhibitors to convert the senescent state to the quiescent state. We showed that inhibition of PDK1 in senescent human dermal fibroblasts eradicates senescence hallmarks and restores entry into the cell cycle by suppressing both nuclear factor κB and mTOR signaling, resulting in restored skin regeneration capacity. Our findings provide insight into a potential therapeutic strategy to treat age-related diseases associated with the accumulation of senescent cells.

摘要

细胞衰老被定义为细胞增殖的稳定和持久停滞。在这里,我们研究了衰老细胞是否可以失去衰老特征并重新进入细胞周期阻滞(静止)的可逆状态。我们基于先前的实验证据构建了细胞衰老的分子调控网络。为了推断网络的调控逻辑,我们用人正常皮肤成纤维细胞进行了磷酸化蛋白芯片实验,并使用该数据通过进化算法优化分子之间的调控关系。通过对网络模型的集合分析,我们确定了 3-磷酸肌醇依赖性蛋白激酶 1(PDK1)作为抑制剂的有前途的靶点,以将衰老状态转化为静止状态。我们表明,在衰老的人皮肤成纤维细胞中抑制 PDK1 通过抑制核因子κB 和 mTOR 信号通路消除衰老特征并恢复细胞周期进入,从而恢复皮肤再生能力。我们的发现为治疗与衰老细胞积累相关的与年龄相关疾病的潜在治疗策略提供了深入了解。

相似文献

1
Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31535-31546. doi: 10.1073/pnas.1920338117. Epub 2020 Nov 23.
2
Phenotypic and functional changes in dermal primary fibroblasts isolated from intrinsically aged human skin.
Exp Dermatol. 2016 Feb;25(2):113-9. doi: 10.1111/exd.12874. Epub 2016 Jan 11.
5
Senotherapeutic-like effect of Silybum marianum flower extract revealed on human skin cells.
PLoS One. 2021 Dec 16;16(12):e0260545. doi: 10.1371/journal.pone.0260545. eCollection 2021.
7
Mild mitochondrial uncoupling prevents premature senescence in human dermal fibroblasts.
J Invest Dermatol. 2014 Feb;134(2):540-543. doi: 10.1038/jid.2013.352. Epub 2013 Aug 20.
9
Preclinical validation of 3-phosphoinositide-dependent protein kinase 1 inhibition in pancreatic cancer.
J Exp Clin Cancer Res. 2019 May 14;38(1):191. doi: 10.1186/s13046-019-1191-2.

引用本文的文献

1
Reverse control of biological networks to restore phenotype landscapes.
Sci Adv. 2025 Aug 22;11(34):eadw3995. doi: 10.1126/sciadv.adw3995.
2
Advances in the application of multi-omics analysis in skin aging.
Front Aging. 2025 Jul 31;6:1596050. doi: 10.3389/fragi.2025.1596050. eCollection 2025.
3
Mechanotransduction for therapeutic approaches: Cellular aging and rejuvenation.
APL Bioeng. 2025 Jun 6;9(2):021502. doi: 10.1063/5.0263236. eCollection 2025 Jun.
4
Senescent macrophages in cancer: roles in tumor progression and treatment opportunities.
Cancer Biol Med. 2025 May 6;22(5):439-59. doi: 10.20892/j.issn.2095-3941.2024.0589.
5
The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging.
Ageing Res Rev. 2025 Jul;109:102760. doi: 10.1016/j.arr.2025.102760. Epub 2025 May 1.
6
Advances in biomarkers and diagnostic significance of organ aging.
Fundam Res. 2023 Apr 9;5(2):683-696. doi: 10.1016/j.fmre.2023.03.009. eCollection 2025 Mar.
7
Atorvastatin calcium alleviates UVB-induced HaCat cell senescence and skin photoaging.
Sci Rep. 2024 Dec 3;14(1):30010. doi: 10.1038/s41598-024-81573-x.
8
Network dynamics-based subtyping of Alzheimer's disease with microglial genetic risk factors.
Alzheimers Res Ther. 2024 Oct 16;16(1):229. doi: 10.1186/s13195-024-01583-9.
9
Senescence in the ageing skin: a new focus on mTORC1 and the lysosome.
FEBS J. 2025 Mar;292(5):960-975. doi: 10.1111/febs.17281. Epub 2024 Sep 26.
10
Canalizing kernel for cell fate determination.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae406.

本文引用的文献

1
From discoveries in ageing research to therapeutics for healthy ageing.
Nature. 2019 Jul;571(7764):183-192. doi: 10.1038/s41586-019-1365-2. Epub 2019 Jul 10.
2
The dynamic nature of senescence in cancer.
Nat Cell Biol. 2019 Jan;21(1):94-101. doi: 10.1038/s41556-018-0249-2. Epub 2019 Jan 2.
3
Rapamycin, proliferation and geroconversion to senescence.
Cell Cycle. 2018;17(24):2655-2665. doi: 10.1080/15384101.2018.1554781. Epub 2018 Dec 12.
4
Senotherapeutics for healthy ageing.
Nat Rev Drug Discov. 2018 May;17(5):377. doi: 10.1038/nrd.2018.44. Epub 2018 Apr 13.
5
Mechanisms and functions of cellular senescence.
J Clin Invest. 2018 Apr 2;128(4):1238-1246. doi: 10.1172/JCI95148.
6
Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma.
Cancer Cell. 2018 Feb 12;33(2):322-336.e8. doi: 10.1016/j.ccell.2018.01.002.
7
Senescence-associated reprogramming promotes cancer stemness.
Nature. 2018 Jan 4;553(7686):96-100. doi: 10.1038/nature25167. Epub 2017 Dec 20.
8
Relevance of the p53-MDM2 axis to aging.
Cell Death Differ. 2018 Jan;25(1):169-179. doi: 10.1038/cdd.2017.187. Epub 2017 Dec 1.
10
Senescence and aging: Causes, consequences, and therapeutic avenues.
J Cell Biol. 2018 Jan 2;217(1):65-77. doi: 10.1083/jcb.201708092. Epub 2017 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验