Suppr超能文献

迁移学习与传统机器学习应用于大脑结构磁共振成像以进行阿尔茨海默病早期诊断和预后的比较

Comparison of Transfer Learning and Conventional Machine Learning Applied to Structural Brain MRI for the Early Diagnosis and Prognosis of Alzheimer's Disease.

作者信息

Nanni Loris, Interlenghi Matteo, Brahnam Sheryl, Salvatore Christian, Papa Sergio, Nemni Raffaello, Castiglioni Isabella

机构信息

Department of Information Engineering, University of Padua, Padua, Italy.

Institute of Molecular Bioimaging and Physiology, National Research Council of Italy (IBFM-CNR), Milan, Italy.

出版信息

Front Neurol. 2020 Nov 5;11:576194. doi: 10.3389/fneur.2020.576194. eCollection 2020.

Abstract

Alzheimer's Disease (AD) is the most common neurodegenerative disease, with 10% prevalence in the elder population. Conventional Machine Learning (ML) was proven effective in supporting the diagnosis of AD, while very few studies investigated the performance of deep learning and transfer learning in this complex task. In this paper, we evaluated the potential of ensemble transfer-learning techniques, pretrained on generic images and then transferred to structural brain MRI, for the early diagnosis and prognosis of AD, with respect to a fusion of conventional-ML approaches based on Support Vector Machine directly applied to structural brain MRI. Specifically, more than 600 subjects were obtained from the ADNI repository, including AD, Mild Cognitive Impaired converting to AD (MCIc), Mild Cognitive Impaired not converting to AD (MCInc), and cognitively-normal (CN) subjects. We used T1-weighted cerebral-MRI studies to train: (1) an ensemble of five transfer-learning architectures pretrained on generic images; (2) a 3D Convolutional Neutral Network (CNN) trained from scratch on MRI volumes; and (3) a fusion of two conventional-ML classifiers derived from different feature extraction/selection techniques coupled to SVM. The AD-vs-CN, MCIc-vs-CN, MCIc-vs-MCInc comparisons were investigated. The ensemble transfer-learning approach was able to effectively discriminate AD from CN with 90.2% AUC, MCIc from CN with 83.2% AUC, and MCIc from MCInc with 70.6% AUC, showing comparable or slightly lower results with the fusion of conventional-ML systems (AD from CN with 93.1% AUC, MCIc from CN with 89.6% AUC, and MCIc from MCInc with AUC in the range of 69.1-73.3%). The deep-learning network trained from scratch obtained lower performance than either the fusion of conventional-ML systems and the ensemble transfer-learning, due to the limited sample of images used for training. These results open new prospective on the use of transfer learning combined with neuroimages for the automatic early diagnosis and prognosis of AD, even if pretrained on generic images.

摘要

阿尔茨海默病(AD)是最常见的神经退行性疾病,在老年人群中的患病率为10%。传统机器学习(ML)已被证明在支持AD诊断方面有效,而很少有研究调查深度学习和迁移学习在这项复杂任务中的表现。在本文中,我们评估了在通用图像上预训练然后转移到脑部结构MRI的集成迁移学习技术在AD早期诊断和预后方面的潜力,与直接应用于脑部结构MRI的基于支持向量机的传统ML方法的融合进行比较。具体而言,从ADNI数据库中获取了600多名受试者,包括AD患者、轻度认知障碍并转化为AD的患者(MCIc)、轻度认知障碍未转化为AD的患者(MCInc)以及认知正常(CN)的受试者。我们使用T1加权脑MRI研究来训练:(1)在通用图像上预训练的五个迁移学习架构的集成;(2)在MRI体积上从头开始训练的3D卷积神经网络(CNN);(3)源自不同特征提取/选择技术并与支持向量机耦合的两个传统ML分类器的融合。研究了AD与CN、MCIc与CN、MCIc与MCInc的比较。集成迁移学习方法能够有效地区分AD与CN,AUC为90.2%;区分MCIc与CN,AUC为83.2%;区分MCIc与MCInc,AUC为70.6%,与传统ML系统的融合相比,结果相当或略低(区分AD与CN,AUC为93.1%;区分MCIc与CN,AUC为89.6%;区分MCIc与MCInc,AUC在69.1 - 73.3%范围内)。由于用于训练的图像样本有限,从头开始训练的深度学习网络的性能低于传统ML系统的融合和集成迁移学习。这些结果为结合神经图像使用迁移学习进行AD的自动早期诊断和预后开辟了新的前景,即使是在通用图像上进行预训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cbc/7674838/785a8e8eb56a/fneur-11-576194-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验