Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India.
Protein Biochemistry Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India.
J Biomol Struct Dyn. 2022 Jun;40(9):3880-3898. doi: 10.1080/07391102.2020.1851303. Epub 2020 Dec 9.
A recent surge in finding new candidate vaccines and potential antivirals to tackle atypical pneumonia triggered by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) needs new and unexplored approaches in solving this global pandemic. The homotrimeric transmembrane spike (S) glycoprotein of coronaviruses which facilitates virus entry into the host cells is covered with -linked glycans having oligomannose and complex sugars. These glycans provide a unique opportunity for their targeting via carbohydrate-binding agents (CBAs) which have shown their antiviral potential against coronaviruses and enveloped viruses. However, CBA-ligand interaction is not fully explored in developing novel carbohydrate-binding-based antivirals due to associated unfavorable responses with CBAs. CBAs possess unique carbohydrate-binding specificity, therefore, CBAs like mannose-specific plant lectins/lectin-like mimic Pradimicin-A (PRM-A) can be used for targeting -linked glycans of S glycoproteins. Here, we report studies on the binding and stability of lectins (NPA, UDA, GRFT, CV-N and wild-type and mutant BanLec) and PRM-A with the S glycoprotein glycans via docking and MD simulation. MM/GBSA calculations were also performed for docked complexes. Interestingly, stable BanLec mutant (H84T) also showed similar docking affinity and interactions as compared to wild-type BanLec, thus, confirming that uncoupling the mitogenic activity did not alter the lectin binding activity of BanLec. The stability of the docked complexes, i.e. PRM-A and lectins with SARS-CoV-2 S glycoprotein showed favorable intermolecular hydrogen-bond formation during the 100 ns MD simulation. Taking these together, our predicted results will be helpful in the design and development of novel CBA-based antivirals for the SARS-CoV-2 neutralization.Communicated by Ramaswamy H. Sarma.
最近,人们发现了许多新的候选疫苗和潜在的抗病毒药物,以应对由新型严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)引发的非典型性肺炎,这需要在解决这一全球大流行问题上采用新的、尚未探索的方法。冠状病毒的三聚体跨膜刺突(S)糖蛋白有助于病毒进入宿主细胞,其表面覆盖着具有寡甘露糖和复合糖的 O-连接聚糖。这些聚糖为通过碳水化合物结合剂(CAB)靶向它们提供了独特的机会,CAB 已显示出对冠状病毒和包膜病毒的抗病毒潜力。然而,由于与 CAB 相关的不利反应,在开发新型基于碳水化合物结合的抗病毒药物时,CAB-配体相互作用尚未得到充分探索。CAB 具有独特的碳水化合物结合特异性,因此,甘露糖特异性植物凝集素/凝集素样模拟物 Pradimicin-A(PRM-A)等 CAB 可用于靶向 S 糖蛋白上的 O-连接聚糖。在这里,我们报告了通过对接和 MD 模拟研究凝集素(NPA、UDA、GRFT、CV-N 和野生型和突变型 BanLec)和 PRM-A 与 S 糖蛋白聚糖的结合和稳定性。还对对接复合物进行了 MM/GBSA 计算。有趣的是,稳定的 BanLec 突变体(H84T)与野生型 BanLec 相比,也表现出相似的对接亲和力和相互作用,从而证实了分离促有丝分裂活性不会改变 BanLec 的凝集素结合活性。对接复合物的稳定性,即 PRM-A 和凝集素与 SARS-CoV-2 S 糖蛋白,在 100 ns MD 模拟过程中表现出有利的分子间氢键形成。综上所述,我们的预测结果将有助于设计和开发基于新型 CAB 的 SARS-CoV-2 中和抗病毒药物。通讯作者为 Ramaswamy H. Sarma。