Suppr超能文献

使用分子对接和模拟研究来感知碳水化合物结合剂与 SARS-CoV-2 刺突糖蛋白的 - 连接聚糖之间的相互作用。

Sensing the interactions between carbohydrate-binding agents and -linked glycans of SARS-CoV-2 spike glycoprotein using molecular docking and simulation studies.

机构信息

Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India.

Protein Biochemistry Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India.

出版信息

J Biomol Struct Dyn. 2022 Jun;40(9):3880-3898. doi: 10.1080/07391102.2020.1851303. Epub 2020 Dec 9.

Abstract

A recent surge in finding new candidate vaccines and potential antivirals to tackle atypical pneumonia triggered by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) needs new and unexplored approaches in solving this global pandemic. The homotrimeric transmembrane spike (S) glycoprotein of coronaviruses which facilitates virus entry into the host cells is covered with -linked glycans having oligomannose and complex sugars. These glycans provide a unique opportunity for their targeting via carbohydrate-binding agents (CBAs) which have shown their antiviral potential against coronaviruses and enveloped viruses. However, CBA-ligand interaction is not fully explored in developing novel carbohydrate-binding-based antivirals due to associated unfavorable responses with CBAs. CBAs possess unique carbohydrate-binding specificity, therefore, CBAs like mannose-specific plant lectins/lectin-like mimic Pradimicin-A (PRM-A) can be used for targeting -linked glycans of S glycoproteins. Here, we report studies on the binding and stability of lectins (NPA, UDA, GRFT, CV-N and wild-type and mutant BanLec) and PRM-A with the S glycoprotein glycans via docking and MD simulation. MM/GBSA calculations were also performed for docked complexes. Interestingly, stable BanLec mutant (H84T) also showed similar docking affinity and interactions as compared to wild-type BanLec, thus, confirming that uncoupling the mitogenic activity did not alter the lectin binding activity of BanLec. The stability of the docked complexes, i.e. PRM-A and lectins with SARS-CoV-2 S glycoprotein showed favorable intermolecular hydrogen-bond formation during the 100 ns MD simulation. Taking these together, our predicted results will be helpful in the design and development of novel CBA-based antivirals for the SARS-CoV-2 neutralization.Communicated by Ramaswamy H. Sarma.

摘要

最近,人们发现了许多新的候选疫苗和潜在的抗病毒药物,以应对由新型严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)引发的非典型性肺炎,这需要在解决这一全球大流行问题上采用新的、尚未探索的方法。冠状病毒的三聚体跨膜刺突(S)糖蛋白有助于病毒进入宿主细胞,其表面覆盖着具有寡甘露糖和复合糖的 O-连接聚糖。这些聚糖为通过碳水化合物结合剂(CAB)靶向它们提供了独特的机会,CAB 已显示出对冠状病毒和包膜病毒的抗病毒潜力。然而,由于与 CAB 相关的不利反应,在开发新型基于碳水化合物结合的抗病毒药物时,CAB-配体相互作用尚未得到充分探索。CAB 具有独特的碳水化合物结合特异性,因此,甘露糖特异性植物凝集素/凝集素样模拟物 Pradimicin-A(PRM-A)等 CAB 可用于靶向 S 糖蛋白上的 O-连接聚糖。在这里,我们报告了通过对接和 MD 模拟研究凝集素(NPA、UDA、GRFT、CV-N 和野生型和突变型 BanLec)和 PRM-A 与 S 糖蛋白聚糖的结合和稳定性。还对对接复合物进行了 MM/GBSA 计算。有趣的是,稳定的 BanLec 突变体(H84T)与野生型 BanLec 相比,也表现出相似的对接亲和力和相互作用,从而证实了分离促有丝分裂活性不会改变 BanLec 的凝集素结合活性。对接复合物的稳定性,即 PRM-A 和凝集素与 SARS-CoV-2 S 糖蛋白,在 100 ns MD 模拟过程中表现出有利的分子间氢键形成。综上所述,我们的预测结果将有助于设计和开发基于新型 CAB 的 SARS-CoV-2 中和抗病毒药物。通讯作者为 Ramaswamy H. Sarma。

相似文献

2
Carbohydrate-Binding Agents: Potential of Repurposing for COVID-19 Therapy.
Curr Protein Pept Sci. 2020;21(11):1085-1096. doi: 10.2174/1389203721666200918153717.
3
A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo.
Cell Rep Med. 2022 Oct 18;3(10):100774. doi: 10.1016/j.xcrm.2022.100774. Epub 2022 Sep 29.
4
structural inhibition of ACE-2 binding site of SARS-CoV-2 and SARS-CoV-2 omicron spike protein by lectin antiviral dyad system to treat COVID-19.
Drug Dev Ind Pharm. 2022 Oct;48(10):539-551. doi: 10.1080/03639045.2022.2137196. Epub 2022 Oct 27.
6
Glycoprotein Targeted CAR-NK Cells for the Treatment of SARS-CoV-2 Infection.
Front Immunol. 2021 Dec 23;12:763460. doi: 10.3389/fimmu.2021.763460. eCollection 2021.
8
Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein.
J Virol. 2022 Feb 9;96(3):e0162621. doi: 10.1128/JVI.01626-21. Epub 2021 Nov 24.
10
Plant lectins as versatile tools to fight coronavirus outbreaks.
Glycoconj J. 2023 Feb;40(1):109-118. doi: 10.1007/s10719-022-10094-4. Epub 2022 Nov 24.

引用本文的文献

1
Mannose-specific plant and microbial lectins as antiviral agents: A review.
Glycoconj J. 2024 Feb;41(1):1-33. doi: 10.1007/s10719-023-10142-7. Epub 2024 Jan 20.
3
Mannose-Binding Lectins as Potent Antivirals against SARS-CoV-2.
Viruses. 2023 Sep 6;15(9):1886. doi: 10.3390/v15091886.
5
Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19.
Life (Basel). 2023 Feb 23;13(3):617. doi: 10.3390/life13030617.
6
The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs.
Brain Sci. 2023 Feb 27;13(3):415. doi: 10.3390/brainsci13030415.
7
Investigation of the effects of -Acetylglucosamine on the stability of the spike protein in SARS-CoV-2 by molecular dynamics simulations.
Comput Theor Chem. 2023 Apr;1222:114049. doi: 10.1016/j.comptc.2023.114049. Epub 2023 Feb 1.
9
Phycochemistry and bioactivity of cyanobacterial secondary metabolites.
Mol Biol Rep. 2022 Nov;49(11):11149-11167. doi: 10.1007/s11033-022-07911-2. Epub 2022 Sep 26.
10
Carbohydrate-binding protein from stinging nettle as fusion inhibitor for SARS-CoV-2 variants of concern.
Front Cell Infect Microbiol. 2022 Aug 30;12:989534. doi: 10.3389/fcimb.2022.989534. eCollection 2022.

本文引用的文献

1
Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants.
Genomics. 2021 Jan;113(1 Pt 2):707-715. doi: 10.1016/j.ygeno.2020.10.001. Epub 2020 Oct 13.
2
Carbohydrate-Binding Agents: Potential of Repurposing for COVID-19 Therapy.
Curr Protein Pept Sci. 2020;21(11):1085-1096. doi: 10.2174/1389203721666200918153717.
3
Structural Characterization of N-Linked Glycans in the Receptor Binding Domain of the SARS-CoV-2 Spike Protein and their Interactions with Human Lectins.
Angew Chem Int Ed Engl. 2020 Dec 21;59(52):23763-23771. doi: 10.1002/anie.202011015. Epub 2020 Oct 22.
4
Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor.
Cell Host Microbe. 2020 Oct 7;28(4):586-601.e6. doi: 10.1016/j.chom.2020.08.004. Epub 2020 Aug 24.
5
Molecular docking and simulation studies on SARS-CoV-2 M reveals Mitoxantrone, Leucovorin, Birinapant, and Dynasore as potent drugs against COVID-19.
J Biomol Struct Dyn. 2021 Nov;39(18):7294-7305. doi: 10.1080/07391102.2020.1805019. Epub 2020 Aug 20.
6
A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2.
Cell Rep. 2020 Aug 11;32(6):108016. doi: 10.1016/j.celrep.2020.108016. Epub 2020 Jul 24.
8
Targeting the protein-protein interface pocket of Aurora-A-TPX2 complex: rational drug design and validation.
J Biomol Struct Dyn. 2021 Jul;39(11):3882-3891. doi: 10.1080/07391102.2020.1772109. Epub 2020 Jun 8.
9
Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors.
J Biomol Struct Dyn. 2021 Jul;39(10):3449-3458. doi: 10.1080/07391102.2020.1766572. Epub 2020 May 20.
10
Site-specific glycan analysis of the SARS-CoV-2 spike.
Science. 2020 Jul 17;369(6501):330-333. doi: 10.1126/science.abb9983. Epub 2020 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验