Suppr超能文献

人类 T 细胞增强因子调控针对分枝杆菌的固有和类似固有适应性 IFN-γ 免疫。

Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria.

机构信息

St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.

Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland.

出版信息

Cell. 2020 Dec 23;183(7):1826-1847.e31. doi: 10.1016/j.cell.2020.10.046. Epub 2020 Dec 8.

Abstract

Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2 γδ T lymphocytes, and of Mycobacterium-non reactive classic T1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8 αβ T and non-classic CD4 αβ T1 lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2 γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8 αβ T, and CD4 αβ T1 cells unable to compensate for this deficit.

摘要

人类干扰素 γ(IFN-γ)先天免疫缺陷导致分枝杆菌病。我们报告了一例因转录因子 T-bet 遗传缺陷导致分枝杆菌病的患者。该患者循环中对分枝杆菌有反应的自然杀伤(NK)、不变自然杀伤 T(iNKT)、黏膜相关不变 T(MAIT)和 Vδ2 γδ T 淋巴细胞以及无分枝杆菌反应的经典 T1 淋巴细胞计数极低,这些细胞的残留群体也产生异常少量的 IFN-γ。其他淋巴细胞亚群发育正常,但 IFN-γ 水平较低,除了 CD8αβT 和非经典 CD4αβT1 淋巴细胞,它们对分枝杆菌抗原的反应正常产生 IFN-γ。因此,人类 T-bet 缺陷通过阻止先天(NK)和先天样适应性淋巴细胞(iNKT、MAIT 和 Vδ2 γδ T 细胞)的发育以及它们产生 IFN-γ而导致分枝杆菌病,分枝杆菌特异性、IFN-γ 产生、纯适应性 CD8αβT 和 CD4αβT1 细胞无法弥补这种缺陷。

相似文献

1
Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria.
Cell. 2020 Dec 23;183(7):1826-1847.e31. doi: 10.1016/j.cell.2020.10.046. Epub 2020 Dec 8.
2
High Th2 cytokine levels and upper airway inflammation in human inherited T-bet deficiency.
J Exp Med. 2021 Aug 2;218(8). doi: 10.1084/jem.20202726. Epub 2021 Jun 23.
3
A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells.
Nature. 2013 Feb 14;494(7436):261-5. doi: 10.1038/nature11813. Epub 2013 Jan 16.
4
Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency.
Nat Immunol. 2018 Sep;19(9):973-985. doi: 10.1038/s41590-018-0178-z. Epub 2018 Aug 20.
5
T-bet-dependent ILC1- and NK cell-derived IFN-γ mediates cDC1-dependent host resistance against Toxoplasma gondii.
PLoS Pathog. 2021 Jan 19;17(1):e1008299. doi: 10.1371/journal.ppat.1008299. eCollection 2021 Jan.
6
Epigenetic and transcriptional programs lead to default IFN-gamma production by gammadelta T cells.
J Immunol. 2007 Mar 1;178(5):2730-6. doi: 10.4049/jimmunol.178.5.2730.
7
Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23.
Sci Immunol. 2018 Dec 21;3(30). doi: 10.1126/sciimmunol.aau6759.
8
Human MCTS1-dependent translation of JAK2 is essential for IFN-γ immunity to mycobacteria.
Cell. 2023 Nov 9;186(23):5114-5134.e27. doi: 10.1016/j.cell.2023.09.024. Epub 2023 Oct 23.
10
Inherited human ITK deficiency impairs IFN-γ immunity and underlies tuberculosis.
J Exp Med. 2023 Jan 2;220(1). doi: 10.1084/jem.20220484. Epub 2022 Nov 3.

引用本文的文献

1
Protective Efficacy of Subunit Vaccine Expressing Rv0976c Against Tuberculosis.
Vaccines (Basel). 2025 Aug 17;13(8):872. doi: 10.3390/vaccines13080872.
2
Interferons in health and disease.
Cell. 2025 Aug 21;188(17):4480-4504. doi: 10.1016/j.cell.2025.06.044.
3
Human LY9 governs CD4 T cell IFN-γ immunity to .
Sci Immunol. 2025 May 30;10(107):eads7377. doi: 10.1126/sciimmunol.ads7377.
4
Oxymatrine and astragaloside IV co-loaded liposomes: Scale-up purposes and their enhancement of anti-PD-1 efficacy against breast cancer.
Mater Today Bio. 2025 Mar 4;32:101634. doi: 10.1016/j.mtbio.2025.101634. eCollection 2025 Jun.
5
SHR0302 Improves Treg/Th17 Imbalance in Patients with Systemic Lupus Erythematosus.
Indian J Clin Biochem. 2025 Apr;40(2):274-283. doi: 10.1007/s12291-023-01179-4. Epub 2024 Mar 15.
6
Case Report: Anti-interferon-γ autoantibodies in an adolescent with disseminated and mycobacterial co-infections.
Front Pediatr. 2025 Feb 27;13:1552469. doi: 10.3389/fped.2025.1552469. eCollection 2025.
7
Innateness transcriptome gradients characterize mouse T lymphocyte populations.
J Immunol. 2025 Feb 1;214(2):223-237. doi: 10.1093/jimmun/vkae015.
8
Human genetics of Whipple's disease.
Curr Opin Rheumatol. 2025 Sep 1;37(5):316-320. doi: 10.1097/BOR.0000000000001088. Epub 2025 Mar 12.
9
STIM1-mediated NFAT signaling synergizes with STAT1 to control T-bet expression and T1 differentiation.
Nat Immunol. 2025 Mar;26(3):484-496. doi: 10.1038/s41590-025-02089-8. Epub 2025 Feb 21.
10
The monogenic landscape of human infectious diseases.
J Allergy Clin Immunol. 2025 Mar;155(3):768-783. doi: 10.1016/j.jaci.2024.12.1078. Epub 2024 Dec 24.

本文引用的文献

1
Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.
Nature. 2021 Feb;590(7845):290-299. doi: 10.1038/s41586-021-03205-y. Epub 2021 Feb 10.
2
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
3
Inherited human IFN-γ deficiency underlies mycobacterial disease.
J Clin Invest. 2020 Jun 1;130(6):3158-3171. doi: 10.1172/JCI135460.
4
Mendelian susceptibility to mycobacterial disease: recent discoveries.
Hum Genet. 2020 Jun;139(6-7):993-1000. doi: 10.1007/s00439-020-02120-y. Epub 2020 Feb 5.
5
6
Hematopoietic Cell Transplantation for MHC Class II Deficiency.
Front Pediatr. 2019 Dec 11;7:516. doi: 10.3389/fped.2019.00516. eCollection 2019.
7
Fast, sensitive and accurate integration of single-cell data with Harmony.
Nat Methods. 2019 Dec;16(12):1289-1296. doi: 10.1038/s41592-019-0619-0. Epub 2019 Nov 18.
8
The biology and functional importance of MAIT cells.
Nat Immunol. 2019 Sep;20(9):1110-1128. doi: 10.1038/s41590-019-0444-8. Epub 2019 Aug 12.
10
Somatic genetic rescue in Mendelian haematopoietic diseases.
Nat Rev Genet. 2019 Oct;20(10):582-598. doi: 10.1038/s41576-019-0139-x. Epub 2019 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验