Suppr超能文献

质子泵或钠-氢交换器抑制剂是否有助于改善 SARS-CoV-2 病理生理学?

Might proton pump or sodium-hydrogen exchanger inhibitors be of value to ameliorate SARs-CoV-2 pathophysiology?

机构信息

Departments of Physiology and Functional Genomics, and of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, FL, USA.

出版信息

Physiol Rep. 2021 Jan;8(24):e14649. doi: 10.14814/phy2.14649.

Abstract

Discovering therapeutics for COVID-19 is a priority. Besides high-throughput screening of compounds, candidates might be identified based on their known mechanisms of action and current understanding of the SARs-CoV-2 life cycle. Using this approach, proton pump (PPIs) and sodium-hydrogen exchanger inhibitors (NHEIs) emerged, because of their potential to inhibit the release of extracellular vesicles (EVs; exosomes and/or microvesicles) that could promote disease progression, and to directly disrupt SARs-CoV-2 pathogenesis. If EVs exacerbate SARs-CoV-2 infection as suggested for other viruses, then inhibiting EV release by PPIs/NHEIs should be beneficial. Mechanisms underlying inhibition of EV release by these drugs remain uncertain, but may involve perturbing endosomal pH especially of multivesicular bodies where intraluminal vesicles (nascent exosomes) are formed. Additionally, PPIs might inhibit the endosomal sorting complex for transport machinery involved in EV biogenesis. Through perturbing endocytic vesicle pH, PPIs/NHEIs could also impede cleavage of SARs-CoV-2 spike protein by cathepsins necessary for viral fusion with the endosomal membrane. Although pulmonary epithelial cells may rely mainly on plasma membrane serine protease TMPRSS2 for cell entry, PPIs/NHEIs might be efficacious in ACE2-expressing cells where viral endocytosis is the major or a contributing entry pathway. These pharmaceutics might also perturb pH in the endoplasmic reticulum-Golgi intermediate and Golgi compartments, thereby potentially disrupting viral assembly and glycosylation of spike protein/ACE2, respectively. A caveat, however, is that facilitation not inhibition of avian infectious bronchitis CoV pathogenesis was reported in one study after increasing Golgi pH. Envelope protein-derived viroporins contributed to pulmonary edema formation in mice infected with SARs-CoV. If similar pathogenesis occurs with SARs-CoV-2, then blocking these channels with NHEIs could ameliorate disease pathogenesis. To ascertain their potential efficacy, PPIs/NHEIs need evaluation in cell and animal models at various phases of SARs-CoV-2 infection. If they prove to be therapeutic, the greatest benefit might be realized with the administration before the onset of severe cytokine release syndrome.

摘要

发现针对 COVID-19 的治疗方法是当务之急。除了高通量筛选化合物外,还可以根据已知的作用机制和当前对 SARS-CoV-2 生命周期的了解来确定候选药物。基于这种方法,质子泵(PPIs)和钠离子-氢交换抑制剂(NHEIs)脱颖而出,因为它们有可能抑制可能促进疾病进展的细胞外囊泡(EVs;外泌体和/或微泡)的释放,并直接破坏 SARS-CoV-2 的发病机制。如果 EVs 像其他病毒一样加剧 SARS-CoV-2 感染,那么通过 PPI/NHEI 抑制 EV 释放应该是有益的。这些药物抑制 EV 释放的机制尚不确定,但可能涉及扰乱内体 pH,特别是多泡体,其中腔内囊泡(新生外泌体)形成。此外,PPIs 可能抑制参与 EV 生物发生的内体分选复合物转运机制。通过扰乱内吞囊泡 pH,PPI/NHEI 还可能阻碍 SARS-CoV-2 刺突蛋白的裂解,该蛋白对于病毒与内体膜融合是必需的。虽然肺上皮细胞可能主要依赖于细胞膜丝氨酸蛋白酶 TMPRSS2 进入细胞,但 PPI/NHEI 在 ACE2 表达细胞中可能有效,病毒内吞是主要或贡献的进入途径。这些药物还可能扰乱内质网-高尔基体中间和高尔基体区室中的 pH,从而分别潜在地破坏病毒组装和刺突蛋白/ACE2 的糖基化。然而,需要注意的是,在一项研究中,增加高尔基体 pH 后,报道了禽类传染性支气管炎 CoV 发病机制的促进而不是抑制。包膜蛋白衍生的 viroporins 导致感染 SARS-CoV 的小鼠发生肺水肿。如果 SARS-CoV-2 也发生类似的发病机制,那么用 NHEI 阻断这些通道可以改善疾病发病机制。为了确定它们的潜在疗效,需要在 SARS-CoV-2 感染的各个阶段在细胞和动物模型中评估 PPI/NHEI。如果它们被证明具有治疗作用,那么在严重细胞因子释放综合征发作之前给药可能会带来最大益处。

相似文献

2
Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors.
PLoS Pathog. 2021 Jul 12;17(7):e1009706. doi: 10.1371/journal.ppat.1009706. eCollection 2021 Jul.
3
Dual Inhibition of Vacuolar-ATPase and TMPRSS2 Is Required for Complete Blockade of SARS-CoV-2 Entry into Cells.
Antimicrob Agents Chemother. 2022 Jul 19;66(7):e0043922. doi: 10.1128/aac.00439-22. Epub 2022 Jun 15.
4
Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19.
J Med Virol. 2021 Sep;93(9):5260-5276. doi: 10.1002/jmv.27019. Epub 2021 May 3.
6
The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19.
mBio. 2021 Aug 31;12(4):e0097021. doi: 10.1128/mBio.00970-21. Epub 2021 Aug 3.
8
Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: A systematic review of in vitro and in vivo studies.
J Cell Physiol. 2021 Apr;236(4):2364-2392. doi: 10.1002/jcp.30032. Epub 2020 Sep 9.
10
Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity.
J Virol. 2022 Apr 27;96(8):e0012822. doi: 10.1128/jvi.00128-22. Epub 2022 Mar 28.

引用本文的文献

1
The S2 Glycoprotein Subunit Determines Intestinal Tropism in Infectious Bronchitis Virus.
Microorganisms. 2025 Aug 17;13(8):1918. doi: 10.3390/microorganisms13081918.
3
Structural Relationships to Efficacy for Prazole-Derived Antivirals.
Adv Sci (Weinh). 2024 May;11(18):e2308312. doi: 10.1002/advs.202308312. Epub 2024 Mar 6.
4
The Association Between Proton Pump Inhibitors and COVID-19 is Confounded by Hyperglycemia in a Population-Based Study.
Front Pharmacol. 2022 Feb 4;13:791074. doi: 10.3389/fphar.2022.791074. eCollection 2022.
8
An Additional Perspective on Proton Pump Inhibitors as Risk Factors for COVID-19.
Clin Drug Investig. 2021 Mar;41(3):287-289. doi: 10.1007/s40261-021-01007-8. Epub 2021 Feb 19.

本文引用的文献

1
Endocytic uptake of SARS-CoV-2: the critical roles of pH, Ca, and NAADP.
Function (Oxf). 2020 Jun 5;1(1):zqaa003. doi: 10.1093/function/zqaa003. eCollection 2020.
3
Increased Risk of COVID-19 Among Users of Proton Pump Inhibitors.
Am J Gastroenterol. 2020 Oct;115(10):1707-1715. doi: 10.14309/ajg.0000000000000798.
4
TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells.
Life Sci Alliance. 2020 Jul 23;3(9). doi: 10.26508/lsa.202000786. Print 2020 Sep.
5
Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2.
Nature. 2020 Sep;585(7826):588-590. doi: 10.1038/s41586-020-2575-3. Epub 2020 Jul 22.
6
Remdesivir for the Treatment of Covid-19 - Preliminary Report. Reply.
N Engl J Med. 2020 Sep 3;383(10):994. doi: 10.1056/NEJMc2022236. Epub 2020 Jul 10.
7
Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study.
Lancet. 2020 Aug 22;396(10250):535-544. doi: 10.1016/S0140-6736(20)31483-5. Epub 2020 Jul 6.
8
Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020.
MMWR Morb Mortal Wkly Rep. 2020 Jun 19;69(24):759-765. doi: 10.15585/mmwr.mm6924e2.
9
Hydroxychloroquine for covid-19: the end of the line?
BMJ. 2020 Jun 15;369:m2378. doi: 10.1136/bmj.m2378.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验