Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Biomater Sci. 2021 Feb 21;9(4):1449-1463. doi: 10.1039/d0bm01609h. Epub 2021 Jan 6.
Nucleic acids, such as messenger RNAs, antisense oligonucleotides, and short interfering RNAs, hold great promise for treating previously 'undruggable' diseases. However, there are numerous biological barriers that hinder nucleic acid delivery to target cells and tissues. While lipid nanoparticles (LNPs) have been developed to protect nucleic acids from degradation and mediate their intracellular delivery, it is challenging to predict how alterations in LNP formulation parameters influence delivery to different organs. In this study, we utilized high-throughput in vivo screening to probe for structure-function relationships of intravenously administered LNPs along with quartz crystal microbalance with dissipation monitoring (QCM-D) to measure the binding affinity of LNPs to apolipoprotein E (ApoE), a protein implicated in the clearance and uptake of lipoproteins by the liver. High-throughput in vivo screening of a library consisting of 96 LNPs identified several formulations containing the helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) that preferentially accumulated in the liver, while identical LNPs that substituted DOPE with the helper lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) preferentially accumulated in the spleen. Using QCM-D, it was found that one DOPE-containing LNP formulation (LNP 42) had stronger interactions with ApoE than an identical LNP formulation that substituted DOPE with DSPC (LNP 90). In order to further validate our findings, we formulated LNP 42 and LNP 90 to encapsulate Cy3-siRNA or mRNA encoding for firefly luciferase. The DSPC-containing LNP (LNP 90) was found to increase delivery to the spleen for both siRNA (two-fold) and mRNA (five-fold). In terms of liver delivery, the DOPE-containing LNP (LNP 42) enhanced mRNA delivery to the liver by two-fold and improved liver transfection by three-fold. Understanding the role of the helper lipid in LNP biodistribution and ApoE adsorption may aid in the future design of LNPs for nucleic acid therapeutics.
核酸,如信使 RNA、反义寡核苷酸和小干扰 RNA,为治疗以前“不可成药”的疾病带来了巨大的希望。然而,有许多生物学屏障阻碍了核酸递送到靶细胞和组织。虽然已经开发出脂质纳米粒(LNPs)来保护核酸免受降解并介导其细胞内递送至靶细胞和组织。然而,预测 LNP 配方参数的改变如何影响到不同的器官仍然具有挑战性。在这项研究中,我们利用高通量体内筛选技术来研究静脉内给予的 LNPs 的结构-功能关系,同时利用石英晶体微天平耗散监测(QCM-D)来测量 LNPs 与载脂蛋白 E(ApoE)的结合亲和力,ApoE 是一种与肝脏清除和摄取脂蛋白有关的蛋白质。对包含 96 个 LNPs 的文库进行高通量体内筛选,确定了几种含有辅助脂质 1,2-二油酰基-sn-甘油-3-磷酸乙醇胺(DOPE)的配方,这些配方优先在肝脏中积累,而用辅助脂质 1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱(DSPC)替代 DOPE 的相同 LNPs 则优先在脾脏中积累。使用 QCM-D 发现,一种含有 DOPE 的 LNP 配方(LNP 42)与 ApoE 的相互作用比用 DSPC 替代 DOPE 的相同 LNP 配方(LNP 90)更强。为了进一步验证我们的发现,我们将 LNP 42 和 LNP 90 制成包裹 Cy3-siRNA 或编码萤火虫荧光素酶的 mRNA 的制剂。发现含有 DSPC 的 LNP(LNP 90)可使 siRNA(增加两倍)和 mRNA(增加五倍)递送至脾脏。就肝脏递送至肝脏而言,含有 DOPE 的 LNP(LNP 42)可使 mRNA 递送至肝脏增加两倍,并使肝转染增加三倍。了解辅助脂质在 LNP 生物分布和 ApoE 吸附中的作用可能有助于未来设计用于核酸治疗的 LNPs。