Suppr超能文献

辅助脂质结构影响蛋白质的吸附和脂质纳米粒向脾和肝的递送。

Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Biomater Sci. 2021 Feb 21;9(4):1449-1463. doi: 10.1039/d0bm01609h. Epub 2021 Jan 6.

Abstract

Nucleic acids, such as messenger RNAs, antisense oligonucleotides, and short interfering RNAs, hold great promise for treating previously 'undruggable' diseases. However, there are numerous biological barriers that hinder nucleic acid delivery to target cells and tissues. While lipid nanoparticles (LNPs) have been developed to protect nucleic acids from degradation and mediate their intracellular delivery, it is challenging to predict how alterations in LNP formulation parameters influence delivery to different organs. In this study, we utilized high-throughput in vivo screening to probe for structure-function relationships of intravenously administered LNPs along with quartz crystal microbalance with dissipation monitoring (QCM-D) to measure the binding affinity of LNPs to apolipoprotein E (ApoE), a protein implicated in the clearance and uptake of lipoproteins by the liver. High-throughput in vivo screening of a library consisting of 96 LNPs identified several formulations containing the helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) that preferentially accumulated in the liver, while identical LNPs that substituted DOPE with the helper lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) preferentially accumulated in the spleen. Using QCM-D, it was found that one DOPE-containing LNP formulation (LNP 42) had stronger interactions with ApoE than an identical LNP formulation that substituted DOPE with DSPC (LNP 90). In order to further validate our findings, we formulated LNP 42 and LNP 90 to encapsulate Cy3-siRNA or mRNA encoding for firefly luciferase. The DSPC-containing LNP (LNP 90) was found to increase delivery to the spleen for both siRNA (two-fold) and mRNA (five-fold). In terms of liver delivery, the DOPE-containing LNP (LNP 42) enhanced mRNA delivery to the liver by two-fold and improved liver transfection by three-fold. Understanding the role of the helper lipid in LNP biodistribution and ApoE adsorption may aid in the future design of LNPs for nucleic acid therapeutics.

摘要

核酸,如信使 RNA、反义寡核苷酸和小干扰 RNA,为治疗以前“不可成药”的疾病带来了巨大的希望。然而,有许多生物学屏障阻碍了核酸递送到靶细胞和组织。虽然已经开发出脂质纳米粒(LNPs)来保护核酸免受降解并介导其细胞内递送至靶细胞和组织。然而,预测 LNP 配方参数的改变如何影响到不同的器官仍然具有挑战性。在这项研究中,我们利用高通量体内筛选技术来研究静脉内给予的 LNPs 的结构-功能关系,同时利用石英晶体微天平耗散监测(QCM-D)来测量 LNPs 与载脂蛋白 E(ApoE)的结合亲和力,ApoE 是一种与肝脏清除和摄取脂蛋白有关的蛋白质。对包含 96 个 LNPs 的文库进行高通量体内筛选,确定了几种含有辅助脂质 1,2-二油酰基-sn-甘油-3-磷酸乙醇胺(DOPE)的配方,这些配方优先在肝脏中积累,而用辅助脂质 1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱(DSPC)替代 DOPE 的相同 LNPs 则优先在脾脏中积累。使用 QCM-D 发现,一种含有 DOPE 的 LNP 配方(LNP 42)与 ApoE 的相互作用比用 DSPC 替代 DOPE 的相同 LNP 配方(LNP 90)更强。为了进一步验证我们的发现,我们将 LNP 42 和 LNP 90 制成包裹 Cy3-siRNA 或编码萤火虫荧光素酶的 mRNA 的制剂。发现含有 DSPC 的 LNP(LNP 90)可使 siRNA(增加两倍)和 mRNA(增加五倍)递送至脾脏。就肝脏递送至肝脏而言,含有 DOPE 的 LNP(LNP 42)可使 mRNA 递送至肝脏增加两倍,并使肝转染增加三倍。了解辅助脂质在 LNP 生物分布和 ApoE 吸附中的作用可能有助于未来设计用于核酸治疗的 LNPs。

相似文献

1
Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver.
Biomater Sci. 2021 Feb 21;9(4):1449-1463. doi: 10.1039/d0bm01609h. Epub 2021 Jan 6.
2
Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.
Eur J Pharm Sci. 2022 Sep 1;176:106234. doi: 10.1016/j.ejps.2022.106234. Epub 2022 Jun 8.
3
Effects of phospholipid type and particle size on lipid nanoparticle distribution in vivo and in pancreatic islets.
J Control Release. 2024 Sep;373:917-928. doi: 10.1016/j.jconrel.2024.07.059. Epub 2024 Aug 6.
4
Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
Nano Lett. 2018 Jun 13;18(6):3814-3822. doi: 10.1021/acs.nanolett.8b01101. Epub 2018 May 8.
5
Bile acid-containing lipid nanoparticles enhance extrahepatic mRNA delivery.
Theranostics. 2024 Jan 1;14(1):1-16. doi: 10.7150/thno.89913. eCollection 2024.
6
Chemistry of Lipid Nanoparticles for RNA Delivery.
Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1.
7
Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening.
J Control Release. 2019 Dec 28;316:404-417. doi: 10.1016/j.jconrel.2019.10.028. Epub 2019 Oct 31.
8
Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles.
ACS Nano. 2021 Apr 27;15(4):6709-6722. doi: 10.1021/acsnano.0c10064. Epub 2021 Mar 23.
9
Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender higher protein expression in hepatic and extra-hepatic tissues.
Mol Ther Methods Clin Dev. 2023 Jun 12;30:235-245. doi: 10.1016/j.omtm.2023.06.005. eCollection 2023 Sep 14.
10
Electrostatic adsorption of polyanions onto lipid nanoparticles controls uptake, trafficking, and transfection of RNA and DNA therapies.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307809121. doi: 10.1073/pnas.2307809121. Epub 2024 Mar 4.

引用本文的文献

1
Pharmacometric modeling of lipid nanoparticle-encapsulated mRNA therapeutics and vaccines: A systematic review.
Mol Ther Nucleic Acids. 2025 Aug 14;36(3):102686. doi: 10.1016/j.omtn.2025.102686. eCollection 2025 Sep 9.
2
Lipid nanoparticles: Composition, formulation, and application.
Mol Ther Methods Clin Dev. 2025 Apr 8;33(2):101463. doi: 10.1016/j.omtm.2025.101463. eCollection 2025 Jun 12.
3
Delivering the Message: Translating mRNA Therapy for Liver Inherited Metabolic Diseases.
J Inherit Metab Dis. 2025 Sep;48(5):e70078. doi: 10.1002/jimd.70078.
4
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
5
Targeted Delivery of Rapamycin via Epidermal Growth Factor Receptors in Pancreatic Cancer Cells Inhibits Cell Proliferation and Induces Apoptosis.
ACS Omega. 2025 Jul 19;10(29):31762-31775. doi: 10.1021/acsomega.5c02820. eCollection 2025 Jul 29.
6
Modulating Immunogenicity and Reactogenicity in mRNA-Lipid Nanoparticle Vaccines through Lipid Component Optimization.
ACS Nano. 2025 Aug 5;19(30):27977-28001. doi: 10.1021/acsnano.5c10648. Epub 2025 Jul 23.
7
Impact of Conjugation Chemistry on the Pharmacokinetics of Peptide-Polymer Conjugates in a Model of Traumatic Brain Injury.
Bioconjug Chem. 2025 Jul 16;36(7):1483-1493. doi: 10.1021/acs.bioconjchem.5c00175. Epub 2025 Jun 27.
8
Engineering Lipid-Polymer Nanoparticles for siRNA Delivery to Cancer Cells.
Pharmaceuticals (Basel). 2025 Jun 10;18(6):864. doi: 10.3390/ph18060864.
10
Research progress on lipid nanoparticle messenger RNA delivery system.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2025 Jun 4:1-10. doi: 10.3724/zdxbyxb-2024-0709.

本文引用的文献

1
Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver.
Nat Commun. 2020 May 15;11(1):2424. doi: 10.1038/s41467-020-16248-y.
2
Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing.
Nat Nanotechnol. 2020 Apr;15(4):313-320. doi: 10.1038/s41565-020-0669-6. Epub 2020 Apr 6.
4
Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering.
Nano Lett. 2020 Mar 11;20(3):1578-1589. doi: 10.1021/acs.nanolett.9b04246. Epub 2020 Feb 5.
6
Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening.
J Control Release. 2019 Dec 28;316:404-417. doi: 10.1016/j.jconrel.2019.10.028. Epub 2019 Oct 31.
7
Nanomaterial Interactions with Human Neutrophils.
ACS Biomater Sci Eng. 2018 Dec 10;4(12):4255-4265. doi: 10.1021/acsbiomaterials.8b01062. Epub 2018 Nov 5.
8
Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function.
Nanoscale. 2019 Aug 1;11(30):14141-14146. doi: 10.1039/c9nr02297j.
9
Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy.
Cancer Lett. 2019 Aug 28;458:102-112. doi: 10.1016/j.canlet.2019.04.040. Epub 2019 May 14.
10
Improved Efficacy in a Fabry Disease Model Using a Systemic mRNA Liver Depot System as Compared to Enzyme Replacement Therapy.
Mol Ther. 2019 Apr 10;27(4):878-889. doi: 10.1016/j.ymthe.2019.03.001. Epub 2019 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验