Suppr超能文献

用于在双光子激发下筛选荧光蛋白的高通量仪器。

High throughput instrument to screen fluorescent proteins under two-photon excitation.

作者信息

Molina Rosana S, King Jonathan, Franklin Jacob, Clack Nathan, McRaven Christopher, Goncharov Vasily, Flickinger Daniel, Svoboda Karel, Drobizhev Mikhail, Hughes Thomas E

机构信息

Department of Cell Biology & Neuroscience, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA.

Vidrio Technologies, LLC, PO Box 1870, Leesburg, VA 20177, USA.

出版信息

Biomed Opt Express. 2020 Nov 17;11(12):7192-7203. doi: 10.1364/BOE.409353. eCollection 2020 Dec 1.

Abstract

Two-photon microscopy together with fluorescent proteins and fluorescent protein-based biosensors are commonly used tools in neuroscience. To enhance their experimental scope, it is important to optimize fluorescent proteins for two-photon excitation. Directed evolution of fluorescent proteins under one-photon excitation is common, but many one-photon properties do not correlate with two-photon properties. A simple system for expressing fluorescent protein mutants is colonies on an agar plate. The small focal volume of two-photon excitation makes creating a high throughput screen in this system a challenge for a conventional point-scanning approach. We present an instrument and accompanying software that solves this challenge by selectively scanning each colony based on a colony map captured under one-photon excitation. This instrument, called the GIZMO, can measure the two-photon excited fluorescence of 10,000 colonies in 7 hours. We show that the GIZMO can be used to evolve a fluorescent protein under two-photon excitation.

摘要

双光子显微镜与荧光蛋白以及基于荧光蛋白的生物传感器是神经科学中常用的工具。为了扩大其实验范围,优化荧光蛋白以用于双光子激发非常重要。在单光子激发下对荧光蛋白进行定向进化很常见,但许多单光子特性与双光子特性并不相关。在琼脂平板上培养菌落是一种表达荧光蛋白突变体的简单系统。双光子激发的小焦体积使得在该系统中创建高通量筛选对于传统的点扫描方法来说是一项挑战。我们展示了一种仪器及配套软件,该仪器通过基于在单光子激发下捕获的菌落图选择性地扫描每个菌落来解决这一挑战。这种仪器称为GIZMO,它能够在7小时内测量10,000个菌落的双光子激发荧光。我们证明了GIZMO可用于在双光子激发下对荧光蛋白进行进化。

相似文献

1
High throughput instrument to screen fluorescent proteins under two-photon excitation.
Biomed Opt Express. 2020 Nov 17;11(12):7192-7203. doi: 10.1364/BOE.409353. eCollection 2020 Dec 1.
3
Two-photon fluorescence excitation in detection of biomolecules.
Biochem Soc Trans. 2000 Feb;28(2):70-4. doi: 10.1042/bst0280070.
4
High Throughput Screening with Multiphoton Excitation.
J Biomol Screen. 1999;4(6):355-362. doi: 10.1177/108705719900400610.
5
Photobleaching in two-photon excitation microscopy.
Biophys J. 2000 Apr;78(4):2159-62. doi: 10.1016/S0006-3495(00)76762-2.
6
High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy.
Biochem Biophys Res Commun. 2002 Mar 15;291(5):1272-5. doi: 10.1006/bbrc.2002.6587.
8
Multiphoton excitation of fluorescent DNA base analogs.
J Biomed Opt. 2006 Jul-Aug;11(4):044004. doi: 10.1117/1.2337521.
9
Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region.
Biophys J. 2005 Aug;89(2):1346-52. doi: 10.1529/biophysj.104.054502. Epub 2005 May 20.
10
Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging.
J Biomed Opt. 2015 Oct;20(10):101202. doi: 10.1117/1.JBO.20.10.101202.

引用本文的文献

2
Automating the High-Throughput Screening of Protein-Based Optical Indicators and Actuators.
Biochemistry. 2023 Jan 17;62(2):169-177. doi: 10.1021/acs.biochem.2c00357. Epub 2022 Oct 31.
4
Multiphoton Bleaching of Red Fluorescent Proteins and the Ways to Reduce It.
Int J Mol Sci. 2022 Jan 11;23(2):770. doi: 10.3390/ijms23020770.

本文引用的文献

1
An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice.
Nat Chem Biol. 2021 Jan;17(1):39-46. doi: 10.1038/s41589-020-00660-y. Epub 2020 Sep 28.
2
jYCaMP: an optimized calcium indicator for two-photon imaging at fiber laser wavelengths.
Nat Methods. 2020 Jul;17(7):694-697. doi: 10.1038/s41592-020-0835-7. Epub 2020 May 25.
3
Rapid mesoscale volumetric imaging of neural activity with synaptic resolution.
Nat Methods. 2020 Mar;17(3):291-294. doi: 10.1038/s41592-020-0760-9. Epub 2020 Mar 2.
4
Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo.
Nat Methods. 2020 Mar;17(3):287-290. doi: 10.1038/s41592-020-0762-7. Epub 2020 Mar 2.
5
Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: Progress and prospects.
Neurosci Res. 2020 Mar;152:3-14. doi: 10.1016/j.neures.2020.01.011. Epub 2020 Jan 25.
6
Kilohertz frame-rate two-photon tomography.
Nat Methods. 2019 Aug;16(8):778-786. doi: 10.1038/s41592-019-0493-9. Epub 2019 Jul 29.
7
High-performance calcium sensors for imaging activity in neuronal populations and microcompartments.
Nat Methods. 2019 Jul;16(7):649-657. doi: 10.1038/s41592-019-0435-6. Epub 2019 Jun 17.
8
Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities.
Nat Cell Biol. 2018 Oct;20(10):1215-1225. doi: 10.1038/s41556-018-0200-6. Epub 2018 Sep 24.
9
Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation.
J Phys Chem Lett. 2017 Jun 15;8(12):2548-2554. doi: 10.1021/acs.jpclett.7b00960. Epub 2017 May 25.
10
Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain.
Nat Biotechnol. 2016 Aug;34(8):857-62. doi: 10.1038/nbt.3594. Epub 2016 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验