Suppr超能文献

医学图像理解中的卷积神经网络:一项综述。

Convolutional neural networks in medical image understanding: a survey.

作者信息

Sarvamangala D R, Kulkarni Raghavendra V

机构信息

REVA University, Bengaluru, India.

Ramaiah University of Applied Sciences, Bengaluru, India.

出版信息

Evol Intell. 2022;15(1):1-22. doi: 10.1007/s12065-020-00540-3. Epub 2021 Jan 3.

Abstract

Imaging techniques are used to capture anomalies of the human body. The captured images must be understood for diagnosis, prognosis and treatment planning of the anomalies. Medical image understanding is generally performed by skilled medical professionals. However, the scarce availability of human experts and the fatigue and rough estimate procedures involved with them limit the effectiveness of image understanding performed by skilled medical professionals. Convolutional neural networks (CNNs) are effective tools for image understanding. They have outperformed human experts in many image understanding tasks. This article aims to provide a comprehensive survey of applications of CNNs in medical image understanding. The underlying objective is to motivate medical image understanding researchers to extensively apply CNNs in their research and diagnosis. A brief introduction to CNNs has been presented. A discussion on CNN and its various award-winning frameworks have been presented. The major medical image understanding tasks, namely image classification, segmentation, localization and detection have been introduced. Applications of CNN in medical image understanding of the ailments of brain, breast, lung and other organs have been surveyed critically and comprehensively. A critical discussion on some of the challenges is also presented.

摘要

成像技术用于捕捉人体异常情况。为了对这些异常进行诊断、预后评估和治疗规划,必须理解所捕获的图像。医学图像理解通常由熟练的医学专业人员进行。然而,人类专家数量稀缺,且他们存在疲劳问题以及涉及粗略的评估程序,这些都限制了熟练医学专业人员进行图像理解的有效性。卷积神经网络(CNN)是图像理解的有效工具。在许多图像理解任务中,它们的表现优于人类专家。本文旨在全面综述CNN在医学图像理解中的应用。其根本目的是激励医学图像理解研究人员在其研究和诊断中广泛应用CNN。文中对CNN进行了简要介绍。还对CNN及其各种获奖框架进行了讨论。介绍了主要的医学图像理解任务,即图像分类、分割、定位和检测。对CNN在脑部、乳腺、肺部及其他器官疾病的医学图像理解中的应用进行了批判性和全面的综述。还对一些挑战进行了批判性讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5018/7778711/d2547eadab8e/12065_2020_540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验