Suppr超能文献

从 RNA 测序数据中准确高效地检测基因融合。

Accurate and efficient detection of gene fusions from RNA sequencing data.

机构信息

Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.

Computational Oncology Group, Molecular Diagnostics Program at the NCT and DKFZ, 69120 Heidelberg, Germany.

出版信息

Genome Res. 2021 Mar;31(3):448-460. doi: 10.1101/gr.257246.119. Epub 2021 Jan 13.

Abstract

The identification of gene fusions from RNA sequencing data is a routine task in cancer research and precision oncology. However, despite the availability of many computational tools, fusion detection remains challenging. Existing methods suffer from poor prediction accuracy and are computationally demanding. We developed Arriba, a novel fusion detection algorithm with high sensitivity and short runtime. When applied to a large collection of published pancreatic cancer samples ( = 803), Arriba identified a variety of driver fusions, many of which affected druggable proteins, including ALK, BRAF, FGFR2, NRG1, NTRK1, NTRK3, RET, and ROS1. The fusions were significantly associated with wild-type tumors and involved proteins stimulating the MAPK signaling pathway, suggesting that they substitute for activating mutations in In addition, we confirmed the transforming potential of two novel fusions, - and -, in cellular assays. These results show Arriba's utility in both basic cancer research and clinical translation.

摘要

从 RNA 测序数据中鉴定基因融合是癌症研究和精准肿瘤学中的一项常规任务。然而,尽管有许多计算工具可用,融合检测仍然具有挑战性。现有的方法存在预测准确性差和计算要求高的问题。我们开发了一种新的融合检测算法 Arriba,它具有高灵敏度和短运行时间。当应用于大量已发表的胰腺癌样本集(=803)时,Arriba 鉴定了多种驱动融合,其中许多融合影响可用药的蛋白质,包括 ALK、BRAF、FGFR2、NRG1、NTRK1、NTRK3、RET 和 ROS1。这些融合与野生型肿瘤显著相关,涉及刺激 MAPK 信号通路的蛋白质,表明它们替代了 中的激活突变。此外,我们在细胞测定中证实了两种新融合 - 和 - 的转化潜力。这些结果表明 Arriba 在基础癌症研究和临床转化中都具有实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a96/7919457/1cb133cc814e/448f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验