Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.
Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.
J Cell Sci. 2020 Dec 21;133(24):jcs250738. doi: 10.1242/jcs.250738.
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
组织发育和稳态由机械线索控制。机械平衡的破坏会通过细胞行为的改变触发力学稳态的恢复,而这些修复机制的缺陷会导致力学病变,例如骨质疏松症、肌肉疾病、纤维化或心血管疾病。因此,感知机械线索并将其与生物分子细胞命运机制相结合对于维持健康至关重要。Notch 信号通路在几乎所有组织中调节细胞和组织命运。Notch 的激活直接和间接地受到机械敏感性的调节, Notch 信号的调节以及细胞命运的改变是细胞对机械线索反应的组成部分。全面了解分子信号、组织力学和组织重塑之间的动态关系具有挑战性。为了应对这一挑战,工程化微组织和计算模型发挥着越来越大的作用。在这篇综述中,我们提出 Notch 扮演“力学稳定器”的角色,维持组织的力学平衡。我们讨论了 Notch 在调节组织力学中的相互作用,重点讨论了心血管组织,并讨论了计算和工程方法在揭示力学和信号在维持细胞和组织力学稳态中的复杂动态关系方面的潜力。