State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China.
Acc Chem Res. 2021 Feb 2;54(3):569-582. doi: 10.1021/acs.accounts.0c00727. Epub 2021 Jan 15.
The field of total synthesis has reached a stage in which emphasis has been increasingly focused on synthetic efficiency rather than merely achieving the synthesis of a target molecule. The pursuit of synthetic efficiency, typically represented by step count and overall yield, is a rich source of inspiration and motivation for synthetic chemists to invent innovative strategies and methods. Among them, convergent strategy has been well recognized as an effective approach to improve efficiency. This strategy generally involves coupling of fragments with similar complexity to furnish the target molecule via subsequent cyclization or late-stage functionalization. Thus, methodologies that enable effective connection of fragments are critical to devising a convergent plan. In our laboratory, convergent strategy has served as a long-standing principle for pursuing efficient synthesis during the course of planning and implementing synthetic projects. In this Account, we summarize our endeavors in the convergent synthesis of natural products over the last ten years. We show how we identify reasonable bond disconnections and employ enabling synthetic methodologies to maximize convergency, leading to the efficient syntheses of over two-dozen highly complex molecules from eight disparate families.In detail, we categorize our work into three parts based on the diverse reaction types for fragment assembly. First, we demonstrate the application of a powerful single-electron reducing agent, SmI, in a late-stage cyclization step, forging the polycyclic skeletons of structurally fascinating alkaloids and sesterterpenoids. Next, we showcase how three different types of cycloaddition reactions can simultaneously construct two challenging C-C bonds in a single step, providing concise entries to three distinct families, namely, spiroquinazoline alkaloids, gracilamine, and kaurane diterpenoids. In the third part, we describe convergent assembly of -kaurane diterpenoids, gelsedine-type alkaloids, and several drug molecules via employing some bifunctional synthons. To access highly oxidized -kaurane diterpenoids, we introduce the hallmark bicyclo[3.2.1]octane ring system at an early stage, and then execute coupling and cyclization by means of a Hoppe's homoaldol reaction and a Mukaiyama-Michael-type addition, respectively. Furthermore, we showcase how the orchestrated combination of an asymmetric Michael addition, a tandem oxidation-aldol reaction and a pinacol rearrangement can dramatically improve the efficiency in synthesizing gelsedine-type alkaloids, with nary a protecting group. Finally, to address the supply issue of several drugs, including anti-influenza drug zanamivir and antitumor agent Et-743, we exploit scalable and practical approaches to provide advantages over current routes in terms of cost, ease of execution, and efficiency.
全合成领域已经发展到一个阶段,重点越来越集中在合成效率上,而不仅仅是实现目标分子的合成。对合成效率的追求,通常以步骤数和总收率来表示,为合成化学家发明创新策略和方法提供了丰富的灵感和动力。其中,汇聚策略已被公认为提高效率的有效方法。该策略通常涉及具有相似复杂性的片段的偶联,以通过随后的环化或后期官能团化来提供目标分子。因此,能够实现片段有效连接的方法对于设计汇聚方案至关重要。在我们的实验室中,汇聚策略一直是我们在规划和实施合成项目过程中追求高效合成的长期原则。在本报告中,我们总结了过去十年中在天然产物的汇聚合成方面所做的努力。我们展示了如何确定合理的键切断,并采用有效的合成方法最大限度地提高汇聚度,从而从八个不同家族的二十多种高度复杂分子中高效合成。详细地,我们根据片段组装的不同反应类型将我们的工作分为三部分。首先,我们展示了强大的单电子还原剂 SmI 的应用,该还原剂可用于后期环化步骤中,形成结构迷人的生物碱和甾体萜烯的多环骨架。接下来,我们展示了三种不同类型的环加成反应如何能够在单个步骤中同时构建两个具有挑战性的 C-C 键,为三个不同的家族提供简洁的入口,即螺环喹唑啉生物碱、 graceamine 和贝壳杉二萜。在第三部分,我们描述了通过使用一些双功能合成子来汇聚组装 -贝壳杉二萜、gelsedine 型生物碱和几种药物分子。为了获得高度氧化的 -贝壳杉二萜,我们在早期引入标志性的双环[3.2.1]辛烷环系统,然后分别通过 Hoppe 的同型羟醛反应和 Mukaiyama-Michael 型加成来进行偶联和环化。此外,我们展示了不对称迈克尔加成、串联氧化-羟醛反应和频哪醇重排的协调组合如何显著提高合成 gelsedine 型生物碱的效率,而无需使用保护基团。最后,为了解决几种药物(包括抗流感药物扎那米韦和抗肿瘤药物 Et-743)的供应问题,我们利用可扩展和实用的方法在成本、执行难度和效率方面优于现有路线。