Suppr超能文献

通过保持密度的数据可视化来评估单细胞转录组的变异性。

Assessing single-cell transcriptomic variability through density-preserving data visualization.

机构信息

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Nat Biotechnol. 2021 Jun;39(6):765-774. doi: 10.1038/s41587-020-00801-7. Epub 2021 Jan 18.

Abstract

Nonlinear data visualization methods, such as t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP), summarize the complex transcriptomic landscape of single cells in two dimensions or three dimensions, but they neglect the local density of data points in the original space, often resulting in misleading visualizations where densely populated subsets of cells are given more visual space than warranted by their transcriptional diversity in the dataset. Here we present den-SNE and densMAP, which are density-preserving visualization tools based on t-SNE and UMAP, respectively, and demonstrate their ability to accurately incorporate information about transcriptomic variability into the visual interpretation of single-cell RNA sequencing data. Applied to recently published datasets, our methods reveal significant changes in transcriptomic variability in a range of biological processes, including heterogeneity in transcriptomic variability of immune cells in blood and tumor, human immune cell specialization and the developmental trajectory of Caenorhabditis elegans. Our methods are readily applicable to visualizing high-dimensional data in other scientific domains.

摘要

非线性数据可视化方法,如 t 分布随机邻域嵌入(t-SNE)和一致流形逼近和投影(UMAP),将单细胞的复杂转录组景观总结为二维或三维,但它们忽略了原始空间中数据点的局部密度,这往往导致误导性的可视化,其中细胞的密集子集被赋予比其在数据集转录多样性中应有的更多的视觉空间。在这里,我们提出了 den-SNE 和 densMAP,它们分别是基于 t-SNE 和 UMAP 的密度保持可视化工具,并展示了它们将转录组可变性信息准确纳入单细胞 RNA 测序数据的视觉解释的能力。应用于最近发表的数据集,我们的方法揭示了一系列生物学过程中转录组可变性的显著变化,包括血液和肿瘤中免疫细胞转录组可变性的异质性、人类免疫细胞特化和秀丽隐杆线虫的发育轨迹。我们的方法可方便地应用于在其他科学领域可视化高维数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb5/8195812/0b6d12cd7e05/nihms-1655068-f0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验