Suppr超能文献

诱导天然 c-di-GMP 磷酸二酯酶导致铜绿假单胞菌生物膜的分散。

Induction of Native c-di-GMP Phosphodiesterases Leads to Dispersal of Pseudomonas aeruginosa Biofilms.

机构信息

Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.

出版信息

Antimicrob Agents Chemother. 2021 Mar 18;65(4). doi: 10.1128/AAC.02431-20.

Abstract

A decade of research has shown that the molecule c-di-GMP functions as a central second messenger in many bacteria. A high level of c-di-GMP is associated with biofilm formation, whereas a low level of c-di-GMP is associated with a planktonic single-cell bacterial lifestyle. c-di-GMP is formed by diguanylate cyclases and is degraded by specific phosphodiesterases. We previously presented evidence that the ectopic expression of the phosphodiesterase YhjH in results in biofilm dispersal. More recently, however, evidence has been presented that the induction of native c-di-GMP phosphodiesterases does not lead to a dispersal of biofilms. The latter result may discourage attempts to use c-di-GMP signaling as a target for the development of antibiofilm drugs. However, here, we demonstrate that the induction of the c-di-GMP phosphodiesterases PA2133 and BifA indeed results in the dispersal of biofilms in both a microtiter tray biofilm assay and a flow cell biofilm system.

摘要

十年来的研究表明,二鸟苷酸环化酶(c-di-GMP)分子在许多细菌中充当中央第二信使。高水平的 c-di-GMP 与生物膜形成有关,而低水平的 c-di-GMP 与浮游单细胞细菌的生活方式有关。c-di-GMP 由双鸟苷酸环化酶形成,并被特定的磷酸二酯酶降解。我们之前的研究证据表明,在 中异位表达磷酸二酯酶 YhjH 会导致生物膜分散。然而,最近有证据表明,诱导天然 c-di-GMP 磷酸二酯酶不会导致 生物膜的分散。后者的结果可能会阻碍将 c-di-GMP 信号作为开发抗生物膜药物的目标的尝试。然而,在这里,我们证明诱导 c-di-GMP 磷酸二酯酶 PA2133 和 BifA 确实会导致微滴定板生物膜测定和流动细胞生物膜系统中 生物膜的分散。

相似文献

1
Induction of Native c-di-GMP Phosphodiesterases Leads to Dispersal of Pseudomonas aeruginosa Biofilms.
Antimicrob Agents Chemother. 2021 Mar 18;65(4). doi: 10.1128/AAC.02431-20.
3
Binding of GTP to BifA is required for the production of Pel-dependent biofilms in .
J Bacteriol. 2024 Feb 22;206(2):e0033123. doi: 10.1128/jb.00331-23. Epub 2024 Jan 10.
4
Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11359-64. doi: 10.1073/pnas.1421450112. Epub 2015 Aug 24.
5
The c-di-GMP Phosphodiesterase PipA (PA0285) Regulates Autoaggregation and Pf4 Bacteriophage Production in Pseudomonas aeruginosa PAO1.
Appl Environ Microbiol. 2022 Jun 28;88(12):e0003922. doi: 10.1128/aem.00039-22. Epub 2022 May 31.
7
FlhF affects the subcellular clustering of WspR through HsbR in .
Appl Environ Microbiol. 2024 Jan 24;90(1):e0154823. doi: 10.1128/aem.01548-23. Epub 2023 Dec 19.
9
Heterogeneity in surface sensing suggests a division of labor in populations.
Elife. 2019 Jun 10;8:e45084. doi: 10.7554/eLife.45084.
10
Role of Cyclic Di-GMP and Exopolysaccharide in Type IV Pilus Dynamics.
J Bacteriol. 2017 Mar 28;199(8). doi: 10.1128/JB.00859-16. Print 2017 Apr 15.

引用本文的文献

1
Stress adaptation under evolution influences survival and metabolic phenotypes of clinical and environmental strains of El-Tor.
Microbiol Spectr. 2025 Mar 4;13(3):e0121124. doi: 10.1128/spectrum.01211-24. Epub 2025 Feb 11.
3
Regulates Biofilm Dispersal in FZB42.
Int J Mol Sci. 2024 May 10;25(10):5201. doi: 10.3390/ijms25105201.
5
New Antimicrobial Strategies to Treat Multi-Drug Resistant Infections Caused by Gram-Negatives in Cystic Fibrosis.
Antibiotics (Basel). 2024 Jan 11;13(1):71. doi: 10.3390/antibiotics13010071.
6
Inhibition of quorum sensing by chemical induction of the MexEF-oprN efflux pump.
Antimicrob Agents Chemother. 2024 Feb 7;68(2):e0138723. doi: 10.1128/aac.01387-23. Epub 2024 Jan 8.
7
A growing battlefield in the war against biofilm-induced antimicrobial resistance: insights from reviews on antibiotic resistance.
Front Cell Infect Microbiol. 2023 Dec 19;13:1327069. doi: 10.3389/fcimb.2023.1327069. eCollection 2023.
8
Bacterial respiratory inhibition triggers dispersal of biofilms.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0110123. doi: 10.1128/aem.01101-23. Epub 2023 Sep 20.
9
The non-attached biofilm aggregate.
Commun Biol. 2023 Sep 1;6(1):898. doi: 10.1038/s42003-023-05281-4.
10
What's in a name? Characteristics of clinical biofilms.
FEMS Microbiol Rev. 2023 Sep 5;47(5). doi: 10.1093/femsre/fuad050.

本文引用的文献

1
A novel c-di-GMP signal system regulates biofilm formation in .
Microb Cell. 2020 Apr 23;7(6):160-161. doi: 10.15698/mic2020.06.720.
3
Tolerance and Resistance of Biofilms to Antimicrobial Agents-How Can Escape Antibiotics.
Front Microbiol. 2019 May 3;10:913. doi: 10.3389/fmicb.2019.00913. eCollection 2019.
6
Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria.
FEMS Microbiol Rev. 2017 May 1;41(3):276-301. doi: 10.1093/femsre/fux010.
7
Cyclic di-GMP: second messenger extraordinaire.
Nat Rev Microbiol. 2017 May;15(5):271-284. doi: 10.1038/nrmicro.2016.190. Epub 2017 Feb 6.
8
The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation.
Microbiology (Reading). 2016 Oct;162(10):1797-1807. doi: 10.1099/mic.0.000354. Epub 2016 Aug 15.
9
Role of Multicellular Aggregates in Biofilm Formation.
mBio. 2016 Mar 22;7(2):e00237. doi: 10.1128/mBio.00237-16.
10
Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange.
Nat Protoc. 2015 Nov;10(11):1820-41. doi: 10.1038/nprot.2015.115. Epub 2015 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验