Suppr超能文献

用于生物医学应用的杂化纳米系统。

Hybrid Nanosystems for Biomedical Applications.

机构信息

Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States.

Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States.

出版信息

ACS Nano. 2021 Feb 23;15(2):2099-2142. doi: 10.1021/acsnano.0c09382. Epub 2021 Jan 26.

Abstract

Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.

摘要

无机/有机杂化纳米系统因其多功能性和有效性而得到了越来越多的发展,可以克服非杂化对应物不易克服的障碍。目前,除了组织再生、疫苗、抗菌药物、生物分子检测、成像探针和治疗学外,杂化纳米系统还被用于基因治疗、药物输送和光疗。尽管这些纳米系统多种多样,但可以根据基础无机/有机成分、辅助部分和杂交结构对其进行分类。在本综述中,我们首先提供了生物医学杂化纳米系统发展的历史背景,然后描述了其组成部分构建块的特性、合成和表征。之后,我们介绍了杂交的结构,并通过应用领域突出了最近的生物医学纳米系统发展,强调了具有独特实用性和创新性的混合物。最后,我们在回顾杂化纳米系统的讨论并对该领域的未来进行展望之前,提请注意正在进行的临床试验。

相似文献

1
Hybrid Nanosystems for Biomedical Applications.
ACS Nano. 2021 Feb 23;15(2):2099-2142. doi: 10.1021/acsnano.0c09382. Epub 2021 Jan 26.
2
Polymer-based stimuli-responsive nanosystems for biomedical applications.
Biotechnol J. 2013 Aug;8(8):931-45. doi: 10.1002/biot.201300073. Epub 2013 Jul 11.
3
Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement.
Int J Pharm X. 2024 Jan 23;7:100231. doi: 10.1016/j.ijpx.2024.100231. eCollection 2024 Jun.
5
Prospects of microbial-engineering for the production of graphene and its derivatives: Application to design nanosystms for cancer theranostics.
Semin Cancer Biol. 2022 Nov;86(Pt 3):885-898. doi: 10.1016/j.semcancer.2021.05.017. Epub 2021 May 18.
6
Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections.
J Control Release. 2022 Nov;351:598-622. doi: 10.1016/j.jconrel.2022.09.052. Epub 2022 Oct 6.
7
Metal-Organic Framework (MOF)-based Nanomaterials for Biomedical Applications.
Curr Med Chem. 2019;26(18):3341-3369. doi: 10.2174/0929867325666180214123500.
8
Bio-inspired graphene-based nano-systems for biomedical applications.
Nanotechnology. 2021 Sep 21;32(50). doi: 10.1088/1361-6528/ac1bdb.
9
Diversification of Device Platforms by Molecular Layers: Hybrid Sensing Platforms, Monolayer Doping, and Modeling.
Langmuir. 2018 Nov 27;34(47):14103-14123. doi: 10.1021/acs.langmuir.8b02369. Epub 2018 Oct 10.
10
"Bioinspired" Membrane-Coated Nanosystems in Cancer Theranostics: A Comprehensive Review.
Pharmaceutics. 2023 Jun 8;15(6):1677. doi: 10.3390/pharmaceutics15061677.

引用本文的文献

1
Recent Advancements in Metal-Organic Framework-Based Microfluidic Chips for Biomedical Applications.
Micromachines (Basel). 2025 Jun 24;16(7):736. doi: 10.3390/mi16070736.
2
Directed Synthesis of Gold Nanoparticle Superstructures Using Self-Assembling Peptoids Containing Metal-Bonding N-Heterocyclic Carbenes.
Nano Lett. 2025 Aug 6;25(31):12049-12058. doi: 10.1021/acs.nanolett.5c02998. Epub 2025 Jul 11.
3
Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor-Bone Microenvironment.
Pharmaceutics. 2025 May 2;17(5):603. doi: 10.3390/pharmaceutics17050603.
4
A systematic review of nanocarriers used in medicine and beyond - definition and categorization framework.
J Nanobiotechnology. 2025 Feb 7;23(1):90. doi: 10.1186/s12951-025-03113-7.
5
Single Nucleotide Polymorphism Highlighted via Heterogeneous Light-Induced Dissipative Structure.
ACS Sens. 2025 Feb 28;10(2):751-760. doi: 10.1021/acssensors.4c02119. Epub 2025 Jan 23.
6
Advances in lysosomal escape mechanisms for gynecological cancer nano-therapeutics.
J Pharm Anal. 2024 Dec;14(12):101119. doi: 10.1016/j.jpha.2024.101119. Epub 2024 Oct 15.
7
Emerging role of exosomes in cancer therapy: progress and challenges.
Mol Cancer. 2025 Jan 13;24(1):13. doi: 10.1186/s12943-024-02215-4.
8
Nanostructures for Delivery of Flavonoids with Antibacterial Potential against .
Antibiotics (Basel). 2024 Sep 5;13(9):844. doi: 10.3390/antibiotics13090844.
9
Advancements in Nanoporous Materials for Biomedical Imaging and Diagnostics.
J Funct Biomater. 2024 Aug 14;15(8):226. doi: 10.3390/jfb15080226.
10
Research and Application of Chitosan Nanoparticles in Orthopedic Infections.
Int J Nanomedicine. 2024 Jul 2;19:6589-6602. doi: 10.2147/IJN.S468848. eCollection 2024.

本文引用的文献

1
Ameliorative effect of biofabricated ZnO nanoparticles of Linn. on dermal wounds removal of oxidative stress and inflammation.
RSC Adv. 2018 Jun 13;8(38):21621-21635. doi: 10.1039/c8ra03500h. eCollection 2018 Jun 8.
2
Injectable Nano Whitlockite Incorporated Chitosan Hydrogel for Effective Hemostasis.
ACS Appl Bio Mater. 2019 Feb 18;2(2):865-873. doi: 10.1021/acsabm.8b00710. Epub 2019 Jan 16.
3
Cell membrane-covered nanoparticles as biomaterials.
Natl Sci Rev. 2019 May;6(3):551-561. doi: 10.1093/nsr/nwz037. Epub 2019 Mar 14.
4
siRNA Delivery with Stem Cell Membrane-Coated Magnetic Nanoparticles for Imaging-Guided Photothermal Therapy and Gene Therapy.
ACS Biomater Sci Eng. 2018 Nov 12;4(11):3895-3905. doi: 10.1021/acsbiomaterials.8b00858. Epub 2018 Oct 2.
6
Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible tissue scaffolds.
Acta Biomater. 2020 Nov;117:261-272. doi: 10.1016/j.actbio.2020.10.001. Epub 2020 Oct 6.
7
Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome.
Sci Adv. 2020 Jul 22;6(30):eaba5379. doi: 10.1126/sciadv.aba5379. eCollection 2020 Jul.
8
Micro and nanoscale technologies in oral drug delivery.
Adv Drug Deliv Rev. 2020;157:37-62. doi: 10.1016/j.addr.2020.07.012. Epub 2020 Jul 22.
9
Nanoclay-based drug delivery systems and their therapeutic potentials.
J Mater Chem B. 2020 Aug 26;8(33):7335-7351. doi: 10.1039/d0tb01031f.
10
A rapid millifluidic synthesis of tunable polymer-protein nanoparticles.
Eur J Pharm Biopharm. 2020 Sep;154:127-135. doi: 10.1016/j.ejpb.2020.07.006. Epub 2020 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验