Lipinski Celio F, Maltarollo Vinicius G, Oliveira Patricia R, da Silva Alberico B F, Honorio Kathia Maria
Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil.
Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Front Robot AI. 2019 Nov 5;6:108. doi: 10.3389/frobt.2019.00108. eCollection 2019.
Discovering (or planning) a new drug candidate involves many parameters, which makes this process slow, costly, and leading to failures at the end in some cases. In the last decades, we have witnessed a revolution in the computational area (hardware, software, large-scale computing, etc.), as well as an explosion in data generation (big data), which raises the need for more sophisticated algorithms to analyze this myriad of data. In this scenario, we can highlight the potentialities of artificial intelligence (AI) or computational intelligence (CI) as a powerful tool to analyze medicinal chemistry data. According to IEEE, computational intelligence involves the theory, the design, the application, and the development of biologically and linguistically motivated computational paradigms. In addition, CI encompasses three main methodologies: neural networks (NN), fuzzy systems, and evolutionary computation. In particular, artificial neural networks have been successfully applied in medicinal chemistry studies. A branch of the NN area that has attracted a lot of attention refers to deep learning (DL) due to its generalization power and ability to extract features from data. Therefore, in this mini-review we will briefly outline the present scope, advances, and challenges related to the use of DL in drug design and discovery, describing successful studies involving quantitative structure-activity relationships (QSAR) and virtual screening (VS) of databases containing thousands of compounds.
发现(或规划)一种新的候选药物涉及许多参数,这使得该过程缓慢、成本高昂,并且在某些情况下最终会导致失败。在过去几十年里,我们见证了计算领域(硬件、软件、大规模计算等)的一场革命,以及数据生成(大数据)的爆炸式增长,这就需要更复杂的算法来分析这海量的数据。在这种情况下,我们可以突出人工智能(AI)或计算智能(CI)作为分析药物化学数据的强大工具的潜力。根据电气和电子工程师协会(IEEE)的定义,计算智能涉及受生物学和语言学启发的计算范式的理论、设计、应用和开发。此外,计算智能包括三种主要方法:神经网络(NN)、模糊系统和进化计算。特别是,人工神经网络已成功应用于药物化学研究。由于其泛化能力和从数据中提取特征的能力,神经网络领域中一个备受关注的分支是深度学习(DL)。因此,在本综述中,我们将简要概述与深度学习在药物设计和发现中的应用相关的当前范围、进展和挑战,描述涉及包含数千种化合物的数据库的定量构效关系(QSAR)和虚拟筛选(VS)的成功研究。