Suppr超能文献

细胞命运与端粒的联系。

The Connection Between Cell Fate and Telomere.

机构信息

Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.

Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.

出版信息

Adv Exp Med Biol. 2021;1275:71-100. doi: 10.1007/978-3-030-49844-3_3.

Abstract

Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.

摘要

端粒酶活性的废除导致端粒缩短,这一过程最终会使染色体末端不稳定,导致基因组不稳定和细胞生长停滞或死亡。端粒缩短导致达到“海弗利克极限”,细胞进入衰老状态。如果衰老被绕过,细胞通过丧失检查点而经历危机。这一过程导致大量细胞死亡,同时伴随着进一步的端粒缩短和自发的端粒融合。在哺乳动物细胞的功能端粒中,DNA 包含 TTAGGG 的双链串联重复序列。Shelterin 复合物由六种不同的蛋白质组成,对于调节细胞中端粒长度和稳定性是必需的。端粒重复结合蛋白 2(TRF2)通过形成 T 环结构来保护端粒,这依赖于 DNA 损伤反应(DDR)的抑制。许多蛋白激酶有助于 DDR 激活的细胞周期检查点途径,并且防止在受损 DNA 修复之前进行 DNA 复制。因此,细胞命运和与端粒长度相关的端粒酶活性之间的联系受到多种蛋白激酶活性的调节。相反,在衰老细胞中失活 DNA 损伤检查点蛋白激酶可以恢复细胞周期进入 S 期。因此,端粒起始的衰老反应是一种 DNA 损伤检查点反应,其激活与功能失调的端粒有直接贡献。在这篇综述中,除了上述内容外,还讨论了端粒去帽端粒功能障碍中非同源末端连接和同源重组等主要修复途径的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验