Suppr超能文献

用于情感分析的注意力-情感增强卷积长短期记忆网络

Attention-Emotion-Enhanced Convolutional LSTM for Sentiment Analysis.

作者信息

Huang Faliang, Li Xuelong, Yuan Changan, Zhang Shichao, Zhang Jilian, Qiao Shaojie

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4332-4345. doi: 10.1109/TNNLS.2021.3056664. Epub 2022 Aug 31.

Abstract

Long short-term memory (LSTM) neural networks and attention mechanism have been widely used in sentiment representation learning and detection of texts. However, most of the existing deep learning models for text sentiment analysis ignore emotion's modulation effect on sentiment feature extraction, and the attention mechanisms of these deep neural network architectures are based on word- or sentence-level abstractions. Ignoring higher level abstractions may pose a negative effect on learning text sentiment features and further degrade sentiment classification performance. To address this issue, in this article, a novel model named AEC-LSTM is proposed for text sentiment detection, which aims to improve the LSTM network by integrating emotional intelligence (EI) and attention mechanism. Specifically, an emotion-enhanced LSTM, named ELSTM, is first devised by utilizing EI to improve the feature learning ability of LSTM networks, which accomplishes its emotion modulation of learning system via the proposed emotion modulator and emotion estimator. In order to better capture various structure patterns in text sequence, ELSTM is further integrated with other operations, including convolution, pooling, and concatenation. Then, topic-level attention mechanism is proposed to adaptively adjust the weight of text hidden representation. With the introduction of EI and attention mechanism, sentiment representation and classification can be more effectively achieved by utilizing sentiment semantic information hidden in text topic and context. Experiments on real-world data sets show that our approach can improve sentiment classification performance effectively and outperform state-of-the-art deep learning-based methods significantly.

摘要

长短期记忆(LSTM)神经网络和注意力机制已广泛应用于文本的情感表示学习和检测。然而,现有的大多数用于文本情感分析的深度学习模型都忽略了情感对情感特征提取的调制作用,并且这些深度神经网络架构的注意力机制是基于单词或句子级别的抽象。忽略更高层次的抽象可能会对学习文本情感特征产生负面影响,并进一步降低情感分类性能。为了解决这个问题,本文提出了一种名为AEC-LSTM的新型模型用于文本情感检测,旨在通过整合情商(EI)和注意力机制来改进LSTM网络。具体来说,首先通过利用EI设计了一种情感增强的LSTM,即ELSTM,以提高LSTM网络的特征学习能力,它通过所提出的情感调制器和情感估计器实现对学习系统的情感调制。为了更好地捕捉文本序列中的各种结构模式,ELSTM进一步与其他操作相结合,包括卷积、池化和拼接。然后,提出了主题级注意力机制来自适应地调整文本隐藏表示的权重。通过引入EI和注意力机制,可以利用隐藏在文本主题和上下文中的情感语义信息更有效地实现情感表示和分类。在真实世界数据集上的实验表明,我们的方法可以有效地提高情感分类性能,并且显著优于基于深度学习的现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验