Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India.
Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
ACS Chem Neurosci. 2021 Mar 3;12(5):930-944. doi: 10.1021/acschemneuro.1c00019. Epub 2021 Feb 19.
The COVID-19 pandemic caused by SARS-CoV-2 represents a global public health emergency. The entry of SARS-CoV-2 into host cells requires the activation of its spike protein by host cell proteases. The serine protease, TMPRSS2, and cysteine proteases, Cathepsins B/L, activate spike protein and enable SARS-CoV-2 entry to the host cell through two completely different and independent pathways. Therefore, inhibiting either TMPRSS2 or cathepsin B/L may not sufficiently block the virus entry. We here hypothesized that simultaneous targeting of both the entry pathways would be more efficient to block the virus entry rather than targeting the entry pathways individually. To this end, we utilized the network-based drug repurposing analyses to identify the possible common drugs that can target both the entry pathways. This study, for the first time, reports the molecules like cyclosporine, calcitriol, and estradiol as candidate drugs with the binding ability to the host proteases, TMPRSS2, and cathepsin B/L. Next, we analyzed drug-gene and gene-gene interaction networks using 332 human targets of SARS-CoV-2 proteins. The network results indicate that, out of 332 human proteins, cyclosporine interacts with 216 (65%) proteins. Furthermore, we performed molecular docking and all-atom molecular dynamics (MD) simulations to explore the binding of drug with TMPRSS2 and cathepsin L. The molecular docking and MD simulation results showed strong and stable binding of cyclosporine A (CsA) with TMPRSS2 and CTSL genes. The above results indicate cyclosporine as a potential drug molecule, as apart from interacting with SARS-CoV-2 entry receptors, it also interacts with most of SARS-CoV-2 target host genes; thus it could potentially interfere with functions of SARS-CoV-2 proteins in human cells. We here also suggest that these antiviral drugs alone or in combination can simultaneously target both the entry pathways and thus can be considered as a potential treatment option for COVID-19.
由 SARS-CoV-2 引起的 COVID-19 大流行代表了全球公共卫生紧急事件。SARS-CoV-2 进入宿主细胞需要宿主细胞蛋白酶激活其刺突蛋白。丝氨酸蛋白酶 TMPRSS2 和半胱氨酸蛋白酶 Cathepsins B/L 激活刺突蛋白,并通过两种完全不同且独立的途径使 SARS-CoV-2 进入宿主细胞。因此,抑制 TMPRSS2 或组织蛋白酶 B/L 可能不足以阻止病毒进入。我们假设同时靶向两种进入途径将更有效地阻止病毒进入,而不是单独靶向进入途径。为此,我们利用基于网络的药物再利用分析来确定可能靶向两种进入途径的共同药物。这项研究首次报告了环孢菌素、钙三醇和雌二醇等分子作为具有与宿主蛋白酶 TMPRSS2 和组织蛋白酶 B/L 结合能力的候选药物。接下来,我们使用 332 种人类 SARS-CoV-2 蛋白靶标分析药物-基因和基因-基因相互作用网络。网络结果表明,在 332 种人类蛋白中,环孢菌素与 216 种(65%)蛋白相互作用。此外,我们进行了分子对接和全原子分子动力学(MD)模拟,以探索药物与 TMPRSS2 和组织蛋白酶 L 的结合。分子对接和 MD 模拟结果表明环孢菌素 A(CsA)与 TMPRSS2 和 CTSL 基因具有很强且稳定的结合。上述结果表明环孢菌素是一种潜在的药物分子,因为它不仅与 SARS-CoV-2 进入受体相互作用,还与大多数 SARS-CoV-2 靶宿主基因相互作用;因此,它可能潜在地干扰 SARS-CoV-2 蛋白在人类细胞中的功能。我们还建议这些抗病毒药物单独或联合使用可以同时靶向两种进入途径,因此可以被视为 COVID-19 的潜在治疗选择。