Suppr超能文献

一种使用HyperLOPIT技术绘制空间蛋白质组图谱的方案 。(原文结尾“in.”后面内容缺失,翻译可能不太完整准确)

A Protocol to Map the Spatial Proteome Using HyperLOPIT in .

作者信息

Nightingale Daniel J H, Lilley Kathryn S, Oliver Stephen G

机构信息

Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, United Kingdom.

Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, United Kingdom.

出版信息

Bio Protoc. 2019 Jul 20;9(14):e3303. doi: 10.21769/BioProtoc.3303.

Abstract

The correct subcellular localization of proteins is vital for cellular function and the study of this process at the systems level will therefore enrich our understanding of the roles of proteins within the cell. Multiple methods are available for the study of protein subcellular localization, including fluorescence microscopy, organelle cataloging, proximity labeling methods, and whole-cell protein correlation profiling methods. We provide here a protocol for the systems-level study of the subcellular localization of the yeast proteome, using a version of hyperplexed Localization of Organelle Proteins by Isotope Tagging (hyperLOPIT) that has been optimized for use with . The entire protocol encompasses cell culture, cell lysis by nitrogen cavitation, subcellular fractionation, monitoring of the fractionation using Western blotting, labeling of samples with TMT isobaric tags and mass spectrometric analysis. Also included is a brief explanation of downstream processing of the mass spectrometry data to produce a map of the spatial proteome. If required, the nitrogen cavitation lysis and Western blotting portions of the protocol may be performed independently of the mass spectrometry analysis. The protocol in its entirety, however, enables the unbiased, systems-level and high-resolution analysis of the localizations of thousands of proteins in parallel within a single experiment.

摘要

蛋白质正确的亚细胞定位对于细胞功能至关重要,因此在系统水平上研究这一过程将丰富我们对蛋白质在细胞内作用的理解。有多种方法可用于研究蛋白质亚细胞定位,包括荧光显微镜、细胞器编目、邻近标记方法和全细胞蛋白质相关性分析方法。我们在此提供一种用于酵母蛋白质组亚细胞定位系统水平研究的方案,使用一种经过优化以与……一起使用的同位素标记细胞器蛋白质超多重定位(hyperLOPIT)版本。整个方案包括细胞培养、通过氮空化进行细胞裂解、亚细胞分级分离、使用蛋白质印迹法监测分级分离、用TMT等压标签标记样品以及质谱分析。还包括对质谱数据下游处理以生成空间蛋白质组图谱的简要解释。如果需要,该方案中的氮空化裂解和蛋白质印迹部分可以独立于质谱分析进行。然而,整个方案能够在单个实验中对数千种蛋白质的定位进行无偏倚、系统水平和高分辨率的并行分析。

相似文献

1
A Protocol to Map the Spatial Proteome Using HyperLOPIT in .
Bio Protoc. 2019 Jul 20;9(14):e3303. doi: 10.21769/BioProtoc.3303.
2
Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT.
Methods Mol Biol. 2019;2049:165-190. doi: 10.1007/978-1-4939-9736-7_10.
3
Using hyperLOPIT to perform high-resolution mapping of the spatial proteome.
Nat Protoc. 2017 Jun;12(6):1110-1135. doi: 10.1038/nprot.2017.026. Epub 2017 May 4.
4
The subcellular organisation of Saccharomyces cerevisiae.
Curr Opin Chem Biol. 2019 Feb;48:86-95. doi: 10.1016/j.cbpa.2018.10.026. Epub 2018 Nov 29.
5
Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics.
Nat Commun. 2019 Jan 18;10(1):331. doi: 10.1038/s41467-018-08191-w.
6
A draft map of the mouse pluripotent stem cell spatial proteome.
Nat Commun. 2016 Jan 12;7:8992. doi: 10.1038/ncomms9992.
7
Comparative Analysis of Quantitative Mass Spectrometric Methods for Subcellular Proteomics.
J Proteome Res. 2020 Apr 3;19(4):1718-1730. doi: 10.1021/acs.jproteome.9b00862. Epub 2020 Mar 5.
8
Analysis of Yeast Peroxisomes via Spatial Proteomics.
Methods Mol Biol. 2023;2643:13-31. doi: 10.1007/978-1-0716-3048-8_2.
9
Dynamic Organellar Maps for Spatial Proteomics.
Curr Protoc Cell Biol. 2019 Jun;83(1):e81. doi: 10.1002/cpcb.81. Epub 2018 Nov 29.
10
A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
Mol Cell Proteomics. 2010 Mar;9(3):457-70. doi: 10.1074/mcp.M900429-MCP200. Epub 2009 Dec 21.

引用本文的文献

1
Mapping diversity in African trypanosomes using high resolution spatial proteomics.
Nat Commun. 2023 Jul 21;14(1):4401. doi: 10.1038/s41467-023-40125-z.
2
Analysis of Yeast Peroxisomes via Spatial Proteomics.
Methods Mol Biol. 2023;2643:13-31. doi: 10.1007/978-1-0716-3048-8_2.

本文引用的文献

1
Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT.
Methods Mol Biol. 2019;2049:165-190. doi: 10.1007/978-1-4939-9736-7_10.
2
Assessing sub-cellular resolution in spatial proteomics experiments.
Curr Opin Chem Biol. 2019 Feb;48:123-149. doi: 10.1016/j.cbpa.2018.11.015. Epub 2018 Dec 14.
3
Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics.
Nat Commun. 2019 Jan 18;10(1):331. doi: 10.1038/s41467-018-08191-w.
4
The subcellular organisation of Saccharomyces cerevisiae.
Curr Opin Chem Biol. 2019 Feb;48:86-95. doi: 10.1016/j.cbpa.2018.10.026. Epub 2018 Nov 29.
5
A Bayesian mixture modelling approach for spatial proteomics.
PLoS Comput Biol. 2018 Nov 27;14(11):e1006516. doi: 10.1371/journal.pcbi.1006516. eCollection 2018 Nov.
6
A Bioconductor workflow for processing and analysing spatial proteomics data.
F1000Res. 2016 Dec 28;5:2926. doi: 10.12688/f1000research.10411.2. eCollection 2016.
7
Genome-wide SWAp-Tag yeast libraries for proteome exploration.
Nat Methods. 2018 Aug;15(8):617-622. doi: 10.1038/s41592-018-0044-9. Epub 2018 Jul 9.
9
Landscape of submitochondrial protein distribution.
Nat Commun. 2017 Aug 18;8(1):290. doi: 10.1038/s41467-017-00359-0.
10
Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale.
Cell Rep. 2017 Jun 27;19(13):2836-2852. doi: 10.1016/j.celrep.2017.06.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验