Mulpuru Viswajit, Mishra Nidhi
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh 211015, India.
ACS Omega. 2021 Mar 5;6(10):6791-6797. doi: 10.1021/acsomega.0c05846. eCollection 2021 Mar 16.
Predicting the fraction unbound of a drug in plasma plays a significant role in understanding its pharmacokinetic properties during in vitro studies of drug design and discovery. Owing to the gaining reliability of machine learning in biological predictive models and development of automated machine learning techniques for the ease of nonexperts of machine learning to optimize and maximize the reliability of the model, in this experiment, we built an in silico prediction model of a fraction unbound drug in human plasma using a chemical fingerprint and a freely available AutoML framework. The predictive model was trained on one of the largest data sets ever of 5471 experimental values using four different AutoML frameworks to compare their performance on this problem and to choose the most significant one. With a coefficient of determination of 0.85 on the test data set, our best prediction model showed better performance than other previously published models, giving our model significant importance in pharmacokinetic modeling.
预测药物在血浆中的游离分数对于在药物设计与发现的体外研究中理解其药代动力学特性起着重要作用。由于机器学习在生物预测模型中的可靠性不断提高,且为便于机器学习非专业人士优化并最大化模型可靠性而开发了自动化机器学习技术,在本实验中,我们使用化学指纹和一个免费的自动机器学习框架构建了人血浆中药物游离分数的计算机预测模型。该预测模型使用四个不同的自动机器学习框架在有史以来最大的数据集之一(包含5471个实验值)上进行训练,以比较它们在这个问题上的性能并选择最重要的一个。在测试数据集上,我们最佳预测模型的决定系数为0.85,其表现优于其他先前发表的模型,这使得我们的模型在药代动力学建模中具有重要意义。