Suppr超能文献

使用适配体修饰的纳米电极检测人源 5-羟色胺能神经元分泌的 5-羟色胺。

Sensing serotonin secreted from human serotonergic neurons using aptamer-modified nanopipettes.

机构信息

Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.

Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.

出版信息

Mol Psychiatry. 2021 Jul;26(7):2753-2763. doi: 10.1038/s41380-021-01066-5. Epub 2021 Mar 25.

Abstract

The serotonergic system in the human brain modulates several physiological processes, and altered serotonergic neurotransmission has been implicated in the neuropathology of several psychiatric disorders. The study of serotonergic neurotransmission in psychiatry has long been restricted to animal models, but advances in cell reprogramming technology have enabled the generation of serotonergic neurons from patient-induced pluripotent stem cells (iPSCs). While iPSC-derived human serotonergic neurons offer the possibility to study serotonin (5-HT) release and uptake, particularly by 5-HT-modulating drugs such as selective serotonin reuptake inhibitors (SSRIs), a major limitation is the inability to reliably quantify 5-HT secreted from neurons in vitro. Herein, we address this technical gap via a novel sensing technology that couples 5-HT-specific DNA aptamers into nanopores (glass nanopipettes) with orifices of ~10 nm to detect 5-HT in complex neuronal culture medium with higher selectivity, sensitivity, and stability than existing methods. The 5-HT aptamers undergo conformational rearrangement upon target capture and serve as gatekeepers of ionic flux through the nanopipette opening. We generated human serotonergic neurons in vitro and detected secreted 5-HT using aptamer-coated nanopipettes in a low nanomolar range, with the possibility of detecting significantly lower (picomolar) concentrations. Furthermore, as a proof of concept, we treated human serotonergic neurons in vitro with the SSRI citalopram and detected a significant increase in extracellular 5-HT using the aptamer-modified nanopipettes. We demonstrate the utility of such methods for 5-HT detection, raising the possibility of fast quantification of neurotransmitters secreted from patient-derived live neuronal cells.

摘要

人脑的血清素能系统调节着多种生理过程,而血清素能神经传递的改变与几种精神疾病的神经病理学有关。精神药理学中血清素能神经传递的研究长期以来一直局限于动物模型,但细胞重编程技术的进步使得能够从患者诱导的多能干细胞(iPSC)中产生血清素能神经元。虽然源自 iPSC 的人类血清素能神经元为研究血清素(5-HT)的释放和摄取提供了可能,特别是通过 5-HT 调节药物,如选择性 5-羟色胺再摄取抑制剂(SSRIs),但主要限制是无法可靠地量化体外神经元分泌的 5-HT。在此,我们通过一种新颖的传感技术解决了这一技术差距,该技术将 5-HT 特异性 DNA 适体偶联到纳米孔(玻璃纳米管)中,纳米孔的孔径约为 10nm,与现有方法相比,该技术具有更高的选择性、灵敏度和稳定性,可以检测复杂神经元培养基中的 5-HT。5-HT 适体在捕获靶标后发生构象重排,充当纳米管开口处离子通量的门控。我们在体外生成人类血清素能神经元,并使用适体涂覆的纳米管在纳摩尔范围内检测到分泌的 5-HT,有可能检测到明显更低(皮摩尔)的浓度。此外,作为概念验证,我们用选择性 5-羟色胺再摄取抑制剂西酞普兰处理体外的人类血清素能神经元,并使用适体修饰的纳米管检测到细胞外 5-HT 的显著增加。我们证明了这些方法在 5-HT 检测中的实用性,为快速量化源自患者的活神经元细胞分泌的神经递质提供了可能性。

相似文献

1
Sensing serotonin secreted from human serotonergic neurons using aptamer-modified nanopipettes.
Mol Psychiatry. 2021 Jul;26(7):2753-2763. doi: 10.1038/s41380-021-01066-5. Epub 2021 Mar 25.
2
Additive effect of rimonabant and citalopram on extracellular serotonin levels monitored with in vivo microdialysis in rat brain.
Eur J Pharmacol. 2013 Jun 5;709(1-3):13-9. doi: 10.1016/j.ejphar.2013.03.043. Epub 2013 Apr 3.
3
Altered serotonergic circuitry in SSRI-resistant major depressive disorder patient-derived neurons.
Mol Psychiatry. 2019 Jun;24(6):808-818. doi: 10.1038/s41380-019-0377-5. Epub 2019 Mar 22.
6
Acute effects of combining citalopram and pindolol on regional brain serotonin synthesis in sham operated and olfactory bulbectomized rats.
Neurochem Int. 2009 Mar-Apr;54(3-4):161-71. doi: 10.1016/j.neuint.2008.08.012. Epub 2008 Nov 27.
8
Expression and impact of Lsamp neural adhesion molecule in the serotonergic neurotransmission system.
Pharmacol Biochem Behav. 2020 Nov;198:173017. doi: 10.1016/j.pbb.2020.173017. Epub 2020 Aug 20.
9
Antagonists and substrates differentially regulate serotonin transporter cell surface expression in serotonergic neurons.
Eur J Pharmacol. 2010 Mar 10;629(1-3):63-7. doi: 10.1016/j.ejphar.2009.12.010. Epub 2009 Dec 16.

引用本文的文献

1
Interfacing with the Brain: How Nanotechnology Can Contribute.
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.
2
Measurement of Real-Time Serotonin Dynamics from Human-Derived Gut Organoids.
Anal Chem. 2025 Mar 11;97(9):5057-5065. doi: 10.1021/acs.analchem.4c06033. Epub 2025 Feb 26.
4
Interfacing Aptamer-Modified Nanopipettes with Neuronal Media and Brain Tissue.
ACS Meas Sci Au. 2023 Nov 22;4(1):92-103. doi: 10.1021/acsmeasuresciau.3c00047. eCollection 2024 Feb 21.
5
Aptamer-Functionalized Interface Nanopores Enable Amino Acid-Specific Peptide Detection.
ACS Nano. 2024 Feb 27;18(8):6286-6297. doi: 10.1021/acsnano.3c10679. Epub 2024 Feb 14.
6
Directed Evolution of Near-Infrared Serotonin Nanosensors with Machine Learning-Based Screening.
Nanomaterials (Basel). 2024 Jan 23;14(3):247. doi: 10.3390/nano14030247.
7
Solid-State Nanopores for Biomolecular Analysis and Detection.
Adv Biochem Eng Biotechnol. 2024;187:283-316. doi: 10.1007/10_2023_240.
8
Aptamer Renaissance for Neurochemical Biosensing.
ACS Nano. 2024 Jan 30;18(4):2552-2563. doi: 10.1021/acsnano.3c09576. Epub 2024 Jan 18.

本文引用的文献

1
Aptamer Conformational Change Enables Serotonin Biosensing with Nanopipettes.
Anal Chem. 2021 Mar 2;93(8):4033-4041. doi: 10.1021/acs.analchem.0c05038. Epub 2021 Feb 17.
3
Macromolecular Crowding Enhances the Detection of DNA and Proteins by a Solid-State Nanopore.
Nano Lett. 2020 Jul 8;20(7):5553-5561. doi: 10.1021/acs.nanolett.0c02246. Epub 2020 Jun 26.
4
High Young's modulus carbon fibers are fouling resistant with fast-scan cyclic voltammetry.
Chem Commun (Camb). 2020 Jul 25;56(58):8023-8026. doi: 10.1039/d0cc02517h. Epub 2020 May 26.
5
Mitigating the Effects of Electrode Biofouling-Induced Impedance for Improved Long-Term Electrochemical Measurements In Vivo.
Anal Chem. 2020 May 5;92(9):6334-6340. doi: 10.1021/acs.analchem.9b05194. Epub 2020 Apr 16.
6
Crowding-Induced DNA Translocation through a Protein Nanopore.
Anal Chem. 2020 Mar 3;92(5):3827-3833. doi: 10.1021/acs.analchem.9b05249. Epub 2020 Feb 20.
7
High-throughput evolution of near-infrared serotonin nanosensors.
Sci Adv. 2019 Dec 18;5(12):eaay3771. doi: 10.1126/sciadv.aay3771. eCollection 2019 Dec.
8
Modeling Brain Disorders Using Induced Pluripotent Stem Cells.
Cold Spring Harb Perspect Biol. 2020 Jun 1;12(6):a035659. doi: 10.1101/cshperspect.a035659.
9
Surface coatings for solid-state nanopores.
Nanoscale. 2019 Nov 14;11(42):19636-19657. doi: 10.1039/c9nr05367k. Epub 2019 Oct 11.
10
Mechanism of Histamine Oxidation and Electropolymerization at Carbon Electrodes.
Anal Chem. 2019 Jul 2;91(13):8366-8373. doi: 10.1021/acs.analchem.9b01178. Epub 2019 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验