Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
Mol Psychiatry. 2021 Jul;26(7):2753-2763. doi: 10.1038/s41380-021-01066-5. Epub 2021 Mar 25.
The serotonergic system in the human brain modulates several physiological processes, and altered serotonergic neurotransmission has been implicated in the neuropathology of several psychiatric disorders. The study of serotonergic neurotransmission in psychiatry has long been restricted to animal models, but advances in cell reprogramming technology have enabled the generation of serotonergic neurons from patient-induced pluripotent stem cells (iPSCs). While iPSC-derived human serotonergic neurons offer the possibility to study serotonin (5-HT) release and uptake, particularly by 5-HT-modulating drugs such as selective serotonin reuptake inhibitors (SSRIs), a major limitation is the inability to reliably quantify 5-HT secreted from neurons in vitro. Herein, we address this technical gap via a novel sensing technology that couples 5-HT-specific DNA aptamers into nanopores (glass nanopipettes) with orifices of ~10 nm to detect 5-HT in complex neuronal culture medium with higher selectivity, sensitivity, and stability than existing methods. The 5-HT aptamers undergo conformational rearrangement upon target capture and serve as gatekeepers of ionic flux through the nanopipette opening. We generated human serotonergic neurons in vitro and detected secreted 5-HT using aptamer-coated nanopipettes in a low nanomolar range, with the possibility of detecting significantly lower (picomolar) concentrations. Furthermore, as a proof of concept, we treated human serotonergic neurons in vitro with the SSRI citalopram and detected a significant increase in extracellular 5-HT using the aptamer-modified nanopipettes. We demonstrate the utility of such methods for 5-HT detection, raising the possibility of fast quantification of neurotransmitters secreted from patient-derived live neuronal cells.
人脑的血清素能系统调节着多种生理过程,而血清素能神经传递的改变与几种精神疾病的神经病理学有关。精神药理学中血清素能神经传递的研究长期以来一直局限于动物模型,但细胞重编程技术的进步使得能够从患者诱导的多能干细胞(iPSC)中产生血清素能神经元。虽然源自 iPSC 的人类血清素能神经元为研究血清素(5-HT)的释放和摄取提供了可能,特别是通过 5-HT 调节药物,如选择性 5-羟色胺再摄取抑制剂(SSRIs),但主要限制是无法可靠地量化体外神经元分泌的 5-HT。在此,我们通过一种新颖的传感技术解决了这一技术差距,该技术将 5-HT 特异性 DNA 适体偶联到纳米孔(玻璃纳米管)中,纳米孔的孔径约为 10nm,与现有方法相比,该技术具有更高的选择性、灵敏度和稳定性,可以检测复杂神经元培养基中的 5-HT。5-HT 适体在捕获靶标后发生构象重排,充当纳米管开口处离子通量的门控。我们在体外生成人类血清素能神经元,并使用适体涂覆的纳米管在纳摩尔范围内检测到分泌的 5-HT,有可能检测到明显更低(皮摩尔)的浓度。此外,作为概念验证,我们用选择性 5-羟色胺再摄取抑制剂西酞普兰处理体外的人类血清素能神经元,并使用适体修饰的纳米管检测到细胞外 5-HT 的显著增加。我们证明了这些方法在 5-HT 检测中的实用性,为快速量化源自患者的活神经元细胞分泌的神经递质提供了可能性。