Suppr超能文献

CRISPR 植物筛选:方法、指南和未来前景。

CRISPR screens in plants: approaches, guidelines, and future prospects.

机构信息

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium.

VIB Center for Plant Systems Biology, Ghent 9052, Belgium.

出版信息

Plant Cell. 2021 May 31;33(4):794-813. doi: 10.1093/plcell/koab099.

Abstract

Clustered regularly interspaced short palindromic repeat (CRISPR)-associated systems have revolutionized genome engineering by facilitating a wide range of targeted DNA perturbations. These systems have resulted in the development of powerful new screens to test gene functions at the genomic scale. While there is tremendous potential to map and interrogate gene regulatory networks at unprecedented speed and scale using CRISPR screens, their implementation in plants remains in its infancy. Here we discuss the general concepts, tools, and workflows for establishing CRISPR screens in plants and analyze the handful of recent reports describing the use of this strategy to generate mutant knockout collections or to diversify DNA sequences. In addition, we provide insight into how to design CRISPR knockout screens in plants given the current challenges and limitations and examine multiple design options. Finally, we discuss the unique multiplexing capabilities of CRISPR screens to investigate redundant gene functions in highly duplicated plant genomes. Combinatorial mutant screens have the potential to routinely generate higher-order mutant collections and facilitate the characterization of gene networks. By integrating this approach with the numerous genomic profiles that have been generated over the past two decades, the implementation of CRISPR screens offers new opportunities to analyze plant genomes at deeper resolution and will lead to great advances in functional and synthetic biology.

摘要

成簇规律间隔短回文重复序列 (CRISPR)-相关系统通过促进广泛的靶向 DNA 扰动,彻底改变了基因组工程。这些系统促成了强大的新筛选方法的发展,可在基因组范围内测试基因功能。虽然使用 CRISPR 筛选以空前的速度和规模绘制和探究基因调控网络具有巨大的潜力,但在植物中,它们的应用仍处于起步阶段。在这里,我们讨论了在植物中建立 CRISPR 筛选的一般概念、工具和工作流程,并分析了少数最近描述使用该策略生成突变敲除文库或多样化 DNA 序列的报告。此外,我们还提供了如何在考虑到当前挑战和限制的情况下在植物中设计 CRISPR 敲除筛选的见解,并研究了多种设计选项。最后,我们讨论了 CRISPR 筛选在研究高度重复植物基因组中冗余基因功能方面的独特多重化能力。组合突变筛选有可能定期生成更高阶的突变文库,并有助于基因网络的表征。通过将这种方法与过去二十年中生成的众多基因组图谱相结合,CRISPR 筛选的实施为以更高分辨率分析植物基因组提供了新的机会,并将引领功能和合成生物学的重大进展。

相似文献

1
CRISPR screens in plants: approaches, guidelines, and future prospects.
Plant Cell. 2021 May 31;33(4):794-813. doi: 10.1093/plcell/koab099.
2
CRISPR Screens in Plants: Approaches, Guidelines, and Future Prospects.
Plant Cell. 2020 Aug 25. doi: 10.1105/tpc.20.00463.
3
Functional Genomics via CRISPR-Cas.
J Mol Biol. 2019 Jan 4;431(1):48-65. doi: 10.1016/j.jmb.2018.06.034. Epub 2018 Jun 28.
4
CRISPR-Cas systems: ushering in the new genome editing era.
Bioengineered. 2018;9(1):214-221. doi: 10.1080/21655979.2018.1470720.
5
CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects.
Plant Cell Rep. 2016 Jul;35(7):1417-27. doi: 10.1007/s00299-016-1985-z. Epub 2016 Apr 25.
6
CRISPR/Cas9-mediated genome editing in plants.
Methods. 2017 May 15;121-122:94-102. doi: 10.1016/j.ymeth.2017.03.009. Epub 2017 Mar 14.
7
Genome-scale CRISPR pooled screens.
Anal Biochem. 2017 Sep 1;532:95-99. doi: 10.1016/j.ab.2016.05.014. Epub 2016 Jun 1.
8
The rise and future of CRISPR-based approaches for high-throughput genomics.
FEMS Microbiol Rev. 2024 Sep 18;48(5). doi: 10.1093/femsre/fuae020.
9
High-Throughput Approaches to Pinpoint Function within the Noncoding Genome.
Mol Cell. 2017 Oct 5;68(1):44-59. doi: 10.1016/j.molcel.2017.09.017.
10
CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.
Curr Protoc Mol Biol. 2016 Jul 1;115:31.6.1-31.6.21. doi: 10.1002/cpmb.10.

引用本文的文献

2
Small signaling peptides define leaf longevity.
Front Plant Sci. 2025 Jun 20;16:1616650. doi: 10.3389/fpls.2025.1616650. eCollection 2025.
4
A comprehensive all-in-one CRISPR toolbox for large-scale screens in plants.
Plant Cell. 2025 Apr 2;37(4). doi: 10.1093/plcell/koaf081.
5
A micropeptide regulates seed desiccation.
Front Plant Sci. 2025 Mar 26;16:1550190. doi: 10.3389/fpls.2025.1550190. eCollection 2025.
6
CRISPR-Cas applications in agriculture and plant research.
Nat Rev Mol Cell Biol. 2025 Mar 7. doi: 10.1038/s41580-025-00834-3.
7
8
Jan and mini-Jan, a model system for potato functional genomics.
Plant Biotechnol J. 2025 Apr;23(4):1243-1256. doi: 10.1111/pbi.14582. Epub 2025 Jan 23.
10
Malicious DNS detection by combining improved transformer and CNN.
Sci Rep. 2024 Dec 4;14(1):30248. doi: 10.1038/s41598-024-81189-1.

本文引用的文献

1
Inference of CRISPR Edits from Sanger Trace Data.
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
2
Prediction of the sequence-specific cleavage activity of Cas9 variants.
Nat Biotechnol. 2020 Nov;38(11):1328-1336. doi: 10.1038/s41587-020-0537-9. Epub 2020 Jun 8.
3
Efficient CRISPR/Cas9-based plant genomic fragment deletions by microhomology-mediated end joining.
Plant Biotechnol J. 2020 Nov;18(11):2161-2163. doi: 10.1111/pbi.13390. Epub 2020 May 22.
4
Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform.
Nat Biotechnol. 2020 May;38(5):638-648. doi: 10.1038/s41587-020-0437-z. Epub 2020 Mar 16.
5
Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
Science. 2020 Apr 17;368(6488):290-296. doi: 10.1126/science.aba8853. Epub 2020 Mar 26.
6
Multiplexed CRISPR technologies for gene editing and transcriptional regulation.
Nat Commun. 2020 Mar 9;11(1):1281. doi: 10.1038/s41467-020-15053-x.
7
High-Throughput Screens of PAM-Flexible Cas9 Variants for Gene Knockout and Transcriptional Modulation.
Cell Rep. 2020 Mar 3;30(9):2859-2868.e5. doi: 10.1016/j.celrep.2020.02.010.
8
High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize.
Plant Cell. 2020 May;32(5):1397-1413. doi: 10.1105/tpc.19.00934. Epub 2020 Feb 25.
9
A large-scale resource for tissue-specific CRISPR mutagenesis in .
Elife. 2020 Feb 13;9:e53865. doi: 10.7554/eLife.53865.
10
Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms.
Mol Plant. 2020 Apr 6;13(4):565-572. doi: 10.1016/j.molp.2020.01.010. Epub 2020 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验