Suppr超能文献

热休克蛋白 gp96 佐剂流感单价裂解疫苗诱导广泛保护性 CD8 T 细胞免疫应答针对高度保守表位。

Broadly Protective CD8 T Cell Immunity to Highly Conserved Epitopes Elicited by Heat Shock Protein gp96-Adjuvanted Influenza Monovalent Split Vaccine.

机构信息

Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

J Virol. 2021 May 24;95(12). doi: 10.1128/JVI.00507-21.

Abstract

Currently, immunization with inactivated influenza virus vaccines is the most prevalent method to prevent infections. However, licensed influenza vaccines provide only strain-specific protection and need to be updated and administered yearly; thus, new vaccines that provide broad protection against multiple influenza virus subtypes are required. In this study, we demonstrated that intradermal immunization with gp96-adjuvanted seasonal influenza monovalent H1N1 split vaccine could induce cross-protection against both group 1 and group 2 influenza A viruses in BALB/c mouse models. Vaccination in the presence of gp96 induced an apparently stronger antigen-specific T cell response than split vaccine alone. Immunization with the gp96-adjuvanted vaccine also elicited an apparent cross-reactive CD8 T cell response that targeted the conserved epitopes across different influenza virus strains. These cross-reactive CD8 T cells might be recalled from a pool of memory cells established after vaccination and recruited from extrapulmonary sites to facilitate viral clearance. Of note, six highly conserved CD8 T epitopes from the viral structural proteins hemagglutinin (HA), M1, nucleoprotein (NP), and PB1 were identified to play a synergistic role in gp96-mediated cross-protection. Comparative analysis showed that most of conservative epitope-specific cytotoxic T lymphocytes (CTLs) apparently induced by heterologous virus infection were also activated by gp96-adjuvanted vaccine, thus resulting in broader protective CD8 T cell responses. Our results demonstrated the advantage of adding gp96 to an existing seasonal influenza vaccine to improve its ability to provide better cross-protection. Owing to continuous mutations in hemagglutinin (HA) or neuraminidase (NA) or recombination of the gene segments between different strains, influenza viruses can escape the immune responses developed by vaccination. Thus, new strategies aimed to efficiently activate immune response that targets to conserved regions among different influenza viruses are urgently needed in designing broad-spectrum influenza vaccine. Heat shock protein gp96 is currently the only natural T cell adjuvant with special ability to cross-present coupled antigen to major histocompatibility complex class I (MHC-I) molecule and activate the downstream antigen-specific CTL response. In this study, we demonstrated the advantages of adding gp96 to monovalent split influenza virus vaccine to improve its ability to provide cross-protection in the BALB/c mouse model and proved that a gp96-activated cross-reactive CTL response is indispensable in our vaccine strategy. Due to its unique adjuvant properties, gp96 might be a promising adjuvant for designing new broad-spectrum influenza vaccines.

摘要

目前,接种流感病毒灭活疫苗是预防感染最常用的方法。然而,已获得许可的流感疫苗仅提供针对特定毒株的保护,需要每年更新和接种,因此需要开发新的疫苗来提供针对多种流感病毒亚型的广泛保护。在这项研究中,我们证明了皮内免疫含有 gp96 的季节性流感单价 H1N1 裂解疫苗可在 BALB/c 小鼠模型中诱导针对 1 型和 2 型流感 A 病毒的交叉保护。gp96 存在时的疫苗接种会引起比单独的裂解疫苗更明显的抗原特异性 T 细胞反应。接种 gp96 佐剂疫苗还引发了针对不同流感病毒株保守表位的明显交叉反应性 CD8 T 细胞反应。这些交叉反应性 CD8 T 细胞可能来自疫苗接种后建立的记忆细胞库中被募集到肺外部位以促进病毒清除的记忆细胞库中被召回。值得注意的是,从病毒结构蛋白血凝素(HA)、M1、核蛋白(NP)和 PB1 中鉴定出六个高度保守的 CD8 T 表位,这些表位在 gp96 介导的交叉保护中发挥协同作用。比较分析表明,由异源病毒感染引起的大多数保守表位特异性细胞毒性 T 淋巴细胞(CTL)也被 gp96 佐剂疫苗激活,从而产生更广泛的保护性 CD8 T 细胞反应。我们的研究结果表明,在现有季节性流感疫苗中添加 gp96 以提高其提供更好交叉保护的能力具有优势。由于血凝素(HA)或神经氨酸酶(NA)的不断突变或不同毒株之间基因片段的重组,流感病毒可以逃避疫苗接种产生的免疫反应。因此,迫切需要设计广谱流感疫苗的新策略,以有效地激活针对不同流感病毒之间保守区域的免疫反应。热休克蛋白 gp96 是目前唯一具有特殊能力的天然 T 细胞佐剂,可将偶联抗原交叉呈递给主要组织相容性复合体 I 类(MHC-I)分子,并激活下游抗原特异性 CTL 反应。在这项研究中,我们证明了在单价裂解流感病毒疫苗中添加 gp96 以提高其在 BALB/c 小鼠模型中提供交叉保护的能力的优势,并证明了 gp96 激活的交叉反应性 CTL 反应是我们疫苗策略中不可或缺的。由于其独特的佐剂特性,gp96 可能成为设计新型广谱流感疫苗的有前途的佐剂。

相似文献

2
Heat shock protein gp96 adjuvant induces T cell responses and cross-protection to a split influenza vaccine.
Vaccine. 2014 May 13;32(23):2703-11. doi: 10.1016/j.vaccine.2014.03.045. Epub 2014 Apr 1.
5
Cationic lipid/DNA complex-adjuvanted influenza A virus vaccination induces robust cross-protective immunity.
J Virol. 2010 Dec;84(24):12691-702. doi: 10.1128/JVI.00769-10. Epub 2010 Oct 13.
10
The Potential of Neuraminidase as an Antigen for Nasal Vaccines To Increase Cross-Protection against Influenza Viruses.
J Virol. 2021 Sep 27;95(20):e0118021. doi: 10.1128/JVI.01180-21. Epub 2021 Aug 11.

引用本文的文献

1
A T cell-based ubiquitin-mediated mRNA vaccine provides cross-protection against H1N1 and B influenza viruses in mice.
Curr Res Microb Sci. 2025 Aug 9;9:100457. doi: 10.1016/j.crmicr.2025.100457. eCollection 2025.
2
T Cell Responses to Influenza Infections in Cattle.
Viruses. 2025 Aug 14;17(8):1116. doi: 10.3390/v17081116.
3
Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines.
Immune Netw. 2024 May 7;24(3):e19. doi: 10.4110/in.2024.24.e19. eCollection 2024 Jun.
5
The Epidemiology of Influenza and the Associated Vaccines Development in China: A Review.
Vaccines (Basel). 2022 Nov 6;10(11):1873. doi: 10.3390/vaccines10111873.
6
Shaping Neonatal Immunization by Tuning the Delivery of Synergistic Adjuvants via Nanocarriers.
ACS Chem Biol. 2022 Sep 16;17(9):2559-2571. doi: 10.1021/acschembio.2c00497. Epub 2022 Aug 26.

本文引用的文献

2
Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination.
J Clin Virol. 2019 Oct;119:44-52. doi: 10.1016/j.jcv.2019.08.009. Epub 2019 Aug 24.
4
Human CD8 T cell cross-reactivity across influenza A, B and C viruses.
Nat Immunol. 2019 May;20(5):613-625. doi: 10.1038/s41590-019-0320-6. Epub 2019 Feb 18.
5
Dendritic cells pulsed with placental gp96 promote tumor-reactive immune responses.
PLoS One. 2019 Jan 31;14(1):e0211490. doi: 10.1371/journal.pone.0211490. eCollection 2019.
7
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. doi: 10.1093/molbev/msy096.
9
Influenza Virus: Dealing with a Drifting and Shifting Pathogen.
Viral Immunol. 2018 Mar;31(2):174-183. doi: 10.1089/vim.2017.0141. Epub 2018 Jan 26.
10
Adjuvanted influenza vaccines.
Hum Vaccin Immunother. 2018 Mar 4;14(3):550-564. doi: 10.1080/21645515.2017.1415684. Epub 2018 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验