School of Medicine, Stanford University, Palo Alto, CA, USA.
Department of Orthopaedic Surgery, Stanford Medicine, Redwood City, CA, USA.
Clin Orthop Relat Res. 2021 Jul 1;479(7):1471-1481. doi: 10.1097/CORR.0000000000001740.
The treatment of periprosthetic joint infection (PJI) is focused on the surgical or chemical removal of biofilm. Antibiotics in isolation are typically ineffective against PJI. Bacteria survive after antibiotic administration because of antibiotic tolerance, resistance, and persistence that arise in the resident bacteria of a biofilm. Small-colony variants are typically slow-growing bacterial subpopulations that arise after antibiotic exposure and are associated with persistent and chronic infections such as PJI. The role of biofilm-mediated antibiotic tolerance in the emergence of antibiotic resistance remains poorly defined experimentally.
QUESTIONS/PURPOSES: We asked: (1) Does prior antibiotic exposure affect how Staphylococcus aureus survives within a developing biofilm when exposed to an antibiotic that penetrates biofilm, like rifampicin? (2) Does exposure to an antibiotic with poor biofilm penetration, such as vancomycin, affect how S. aureus survives within a developing biofilm? (3) Do small-colony variants emerge from antibiotic-tolerant or -resistant bacteria in a S. aureus biofilm?
We used a porous membrane as an in vitro implant model to grow luminescent S. aureus biofilms and simultaneously track microcolony expansion. We evaluated the impact of tolerance on the development of resistance by comparing rifampicin (an antibiotic that penetrates S. aureus biofilm) with vancomycin (an antibiotic that penetrates biofilm poorly). We performed viability counting after membrane dissociation to discriminate among tolerant, resistant, and persistent bacteria. Biofilm quantification and small-colony morphologies were confirmed using scanning electron microscopy. Because of experimental variability induced by the starting bacterial inoculum, relative changes were compared since absolute values may not have been statistically comparable.
Antibiotic-naïve S. aureus placed under the selective pressure of rifampicin initially survived within an emerging biofilm by using tolerance given that biofilm resident cell viability revealed 1.0 x 108 CFU, of which 7.5 x 106 CFU were attributed to the emergence of resistance and 9.3 x 107 CFU of which were attributed to the development of tolerance. Previous exposure of S. aureus to rifampicin obviated tolerance-mediate survival when rifampicin resistance was present, since the number of viable biofilm resident cells (9.5 x 109 CFU) nearly equaled the number of rifampicin-resistant bacteria (1.1 x 1010 CFU). Bacteria exposed to an antibiotic with poor biofilm penetration, like vancomycin, survive within an emerging biofilm by using tolerance as well because the biofilm resident cell viability for vancomycin-naïve (1.6 x 1010 CFU) and vancomycin-resistant (1.0 x 1010 CFU) S. aureus could not be accounted for by emergence of resistance. Adding rifampicin to vancomycin resulted in a nearly 500-fold reduction in vancomycin-tolerant bacteria from 1.5 x 1010 CFU to 3.3 x 107 CFU. Small-colony variant S. aureus emerged within the tolerant bacterial population within 24 hours of biofilm-penetrating antibiotic administration. Scanning electron microscopy before membrane dissociation confirmed the presence of small, uniform cells with biofilm-related microstructures when unexposed to rifampicin as well as large, misshapen, lysed cells with a small-colony variant morphology [29, 41, 42, 63] and a lack of biofilm-related microstructures when exposed to rifampicin. This visually confirmed the rapid emergence of small-colony variants within the sessile niche of a developing biofilm when exposed to an antibiotic that exerted selective pressure.
Tolerance explains why surgical and nonsurgical modalities that rely on antibiotics to "treat" residual microscopic biofilm may fail over time. The differential emergence of resistance based on biofilm penetration may explain why some suppressive antibiotic therapies that do not penetrate biofilm well may rely on bacterial control while limiting the emergence of resistance. However, this strategy fails to address the tolerant bacterial niche that harbors persistent bacteria with a small-colony variant morphology.
Our work establishes biofilm-mediated antibiotic tolerance as a neglected feature of bacterial communities that prevents the effective treatment of PJI.
治疗假体周围关节感染(PJI)的重点是通过手术或化学方法清除生物膜。抗生素单独使用通常对 PJI 无效。由于生物膜中常驻细菌产生的抗生素耐药性和抗生素耐受性,抗生素治疗后细菌仍然存活。小菌落变异体通常是抗生素暴露后出现的生长缓慢的细菌亚群,与 PJI 等持续性和慢性感染有关。生物膜介导的抗生素耐受性在抗生素耐药性出现中的作用在实验上仍未得到很好的定义。
问题/目的:我们提出了以下问题:(1) 先前接触抗生素会影响耐抗生素的金黄色葡萄球菌在暴露于穿透生物膜的抗生素(如利福平)时在生物膜内的存活情况吗?(2) 接触生物膜穿透性差的抗生素(如万古霉素)会影响金黄色葡萄球菌在生物膜内的存活情况吗?(3) 小菌落变异体是否会从抗生素耐受或耐药的金黄色葡萄球菌生物膜中出现?
我们使用多孔膜作为体外植入模型来生长发光金黄色葡萄球菌生物膜,并同时跟踪微菌落的扩张。我们通过比较利福平(一种穿透金黄色葡萄球菌生物膜的抗生素)和万古霉素(一种生物膜穿透性差的抗生素),评估了抗生素耐受性对耐药性发展的影响。我们通过膜分离进行活菌计数,以区分耐受、耐药和持久的细菌。生物膜定量和小菌落形态学使用扫描电子显微镜进行了确认。由于起始细菌接种物引起的实验变异性,我们比较了相对变化,因为绝对值可能在统计学上不具有可比性。
在利福平的选择压力下,初始无抗生素接触的金黄色葡萄球菌通过耐受来生存于新兴的生物膜中,因为生物膜常驻细胞的存活能力显示为 1.0 x 108 CFU,其中 7.5 x 106 CFU归因于耐药性的出现,9.3 x 107 CFU归因于耐受性的发展。金黄色葡萄球菌先前接触利福平会消除耐受介导的生存,因为生物膜常驻细胞的存活数量(9.5 x 109 CFU)几乎等于利福平耐药菌的数量(1.1 x 1010 CFU)。接触生物膜穿透性差的抗生素(如万古霉素)的金黄色葡萄球菌也通过耐受来生存于新兴的生物膜中,因为万古霉素敏感(1.6 x 1010 CFU)和万古霉素耐药(1.0 x 1010 CFU)金黄色葡萄球菌的生物膜常驻细胞存活量无法用耐药性的出现来解释。在万古霉素中加入利福平,会使万古霉素耐受菌从 1.5 x 1010 CFU 减少到 3.3 x 107 CFU,减少近 500 倍。在生物膜穿透性抗生素给药后 24 小时内,金黄色葡萄球菌的小菌落变异体出现在耐受细菌群体中。在未暴露于利福平的情况下,膜分离前的扫描电子显微镜证实了存在小而均匀的细胞,具有生物膜相关的微观结构,以及大而变形、裂解的细胞,具有小菌落变异体形态[29、41、42、63],并且没有生物膜相关的微观结构。这在视觉上证实了在暴露于选择性压力的抗生素时,小菌落变异体在发展中的生物膜的定殖位中迅速出现。
抗生素耐受性解释了为什么依赖抗生素“治疗”残留的微观生物膜的手术和非手术方法会随着时间的推移而失败。基于生物膜穿透性的耐药性的差异出现可能解释了为什么一些抑制性抗生素治疗方法不能穿透生物膜,但能控制细菌,同时限制耐药性的出现。然而,这种策略不能解决含有小菌落变异体形态的持久细菌的耐受细菌生态位。
我们的工作确立了生物膜介导的抗生素耐受性作为一种被忽视的细菌群落特征,它会阻碍 PJI 的有效治疗。