Suppr超能文献

多巴胺传递的时空尺度。

Spatial and temporal scales of dopamine transmission.

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Rev Neurosci. 2021 Jun;22(6):345-358. doi: 10.1038/s41583-021-00455-7. Epub 2021 Apr 9.

Abstract

Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.

摘要

多巴胺是一种典型的神经调质,通过 G 蛋白偶联受体信号控制回路功能。神经调质是容积性递质,释放后扩散,广泛激活许多靶细胞上的受体。然而,我们才刚刚开始了解多巴胺在空间和时间上的特定传递方式。尽管多巴胺的某些作用是通过缓慢和弥散的信号传递介导的,但最近的研究表明,某些多巴胺功能需要时空精度。在这里,我们回顾了描述纹状体中多巴胺信号传递的文献,包括其释放机制和受体组织。然后,我们提出了域重叠模型,其中释放和受体相对于彼此排列在微米级结构中。这种结构不同于点对点突触传递和通常为神经调质提出的广泛组织。它使受体亚群在基线活动期间在释放位点的微米级域内被激活,并且在多巴胺神经元群体的放电同步时,通过域重叠实现更广泛的受体激活。这种信号结构以及多巴胺释放的特性可以解释为什么发射模式的转换支持多巴胺的广泛和动态作用,并可能导致不同的途径调节。

相似文献

1
Spatial and temporal scales of dopamine transmission.
Nat Rev Neurosci. 2021 Jun;22(6):345-358. doi: 10.1038/s41583-021-00455-7. Epub 2021 Apr 9.
2
Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum.
J Neurosci. 2003 May 15;23(10):4378-85. doi: 10.1523/JNEUROSCI.23-10-04378.2003.
3
Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia.
Biol Psychiatry. 2017 Jan 1;81(1):43-51. doi: 10.1016/j.biopsych.2016.07.002. Epub 2016 Jul 12.
4
Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum.
J Neurophysiol. 2017 Mar 1;117(3):987-999. doi: 10.1152/jn.00683.2016. Epub 2016 Dec 7.
5
Postsynaptic integration of glutamatergic and dopaminergic signals in the striatum.
Prog Neurobiol. 1994 Oct;44(2):163-96. doi: 10.1016/0301-0082(94)90037-x.
7
NR2A-containing NMDA receptors depress glutamatergic synaptic transmission and evoked-dopamine release in the mouse striatum.
J Neurochem. 2008 Aug;106(4):1758-65. doi: 10.1111/j.1471-4159.2008.05512.x. Epub 2008 Jun 7.
9
Divergent properties and independent regulation of striatal dopamine and GABA co-transmission.
Cell Rep. 2022 May 17;39(7):110823. doi: 10.1016/j.celrep.2022.110823.
10
Selective Role of RGS9-2 in Regulating Retrograde Synaptic Signaling of Indirect Pathway Medium Spiny Neurons in Dorsal Striatum.
J Neurosci. 2018 Aug 8;38(32):7120-7131. doi: 10.1523/JNEUROSCI.0493-18.2018. Epub 2018 Jul 13.

引用本文的文献

1
A Toolkit for Mapping and Modulating Neurotransmission at Single-Cell Resolution.
bioRxiv. 2025 Aug 18:2025.08.18.670838. doi: 10.1101/2025.08.18.670838.
3
Dopamine alters functional gradients in Parkinson's disease.
Imaging Neurosci (Camb). 2025 May 6;3. doi: 10.1162/imag_a_00564. eCollection 2025.
5
Gut microbiota and stress ulcers: unraveling the neurotransmitter connection.
Front Neurosci. 2025 Jul 10;19:1594179. doi: 10.3389/fnins.2025.1594179. eCollection 2025.
6
Cholinergic modulation of dopamine release drives effortful behavior.
bioRxiv. 2025 Jun 21:2025.06.18.660394. doi: 10.1101/2025.06.18.660394.
7
Striatal Dopamine Actions and Movement: Inferences from Parkinson Disease.
J Neurosci. 2025 Jun 11;45(24):e0022252025. doi: 10.1523/JNEUROSCI.0022-25.2025.
8
SPLICEIT Fluorescent Sensor for Integrating Dopamine Release with Cellular Resolution.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202511186. doi: 10.1002/anie.202511186. Epub 2025 Jun 18.
10
Coding principles of dopaminergic transmission modes.
Sci Adv. 2025 May 30;11(22):eadx6367. doi: 10.1126/sciadv.adx6367. Epub 2025 May 28.

本文引用的文献

1
Molecular and functional architecture of striatal dopamine release sites.
Neuron. 2022 Jan 19;110(2):248-265.e9. doi: 10.1016/j.neuron.2021.10.028. Epub 2021 Nov 11.
3
Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment.
Cell. 2021 May 13;184(10):2733-2749.e16. doi: 10.1016/j.cell.2021.03.046. Epub 2021 Apr 15.
4
A Unified Framework for Dopamine Signals across Timescales.
Cell. 2020 Dec 10;183(6):1600-1616.e25. doi: 10.1016/j.cell.2020.11.013. Epub 2020 Nov 27.
5
Synapse and Active Zone Assembly in the Absence of Presynaptic Ca Channels and Ca Entry.
Neuron. 2020 Aug 19;107(4):667-683.e9. doi: 10.1016/j.neuron.2020.05.032. Epub 2020 Jun 16.
6
Synaptotagmin-1 is the Ca sensor for fast striatal dopamine release.
Elife. 2020 Jun 3;9:e58359. doi: 10.7554/eLife.58359.
8
Dopamine D2 receptors in discrimination learning and spine enlargement.
Nature. 2020 Mar;579(7800):555-560. doi: 10.1038/s41586-020-2115-1. Epub 2020 Mar 18.
9
Abundance Compensates Kinetics: Similar Effect of Dopamine Signals on D1 and D2 Receptor Populations.
J Neurosci. 2020 Apr 1;40(14):2868-2881. doi: 10.1523/JNEUROSCI.1951-19.2019. Epub 2020 Feb 18.
10
Believing in dopamine.
Nat Rev Neurosci. 2019 Nov;20(11):703-714. doi: 10.1038/s41583-019-0220-7. Epub 2019 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验