Suppr超能文献

使用基于深度迁移学习的儿科胸部 X 光图像自动检测肺炎病例。

Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images.

机构信息

Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Medical Image and Signal Processing Research Core, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Br J Radiol. 2021 May 1;94(1121):20201263. doi: 10.1259/bjr.20201263. Epub 2021 Apr 16.

Abstract

OBJECTIVE

Pneumonia is a lung infection and causes the inflammation of the small air sacs (Alveoli) in one or both lungs. Proper and faster diagnosis of pneumonia at an early stage is imperative for optimal patient care. Currently, chest X-ray is considered as the best imaging modality for diagnosing pneumonia. However, the interpretation of chest X-ray images is challenging. To this end, we aimed to use an automated convolutional neural network-based transfer-learning approach to detect pneumonia in paediatric chest radiographs.

METHODS

Herein, an automated convolutional neural network-based transfer-learning approach using four different pre-trained models ( VGG19, DenseNet121, Xception, and ResNet50) was applied to detect pneumonia in children (1-5 years) chest X-ray images. The performance of different proposed models for testing data set was evaluated using five performances metrics, including accuracy, sensitivity/recall, Precision, area under curve, and F1 score.

RESULTS

All proposed models provide accuracy greater than 83.0% for binary classification. The pre-trained DenseNet121 model provides the highest classification performance of automated pneumonia classification with 86.8% accuracy, followed by Xception model with an accuracy of 86.0%. The sensitivity of the proposed models was greater than 91.0%. The Xception and DenseNet121 models achieve the highest classification performance with F1-score greater than 89.0%. The plotted area under curve of receiver operating characteristics of VGG19, Xception, ResNet50, and DenseNet121 models are 0.78, 0.81, 0.81, and 0.86, respectively.

CONCLUSION

Our data showed that the proposed models achieve a high accuracy for binary classification. Transfer learning was used to accelerate training of the proposed models and resolve the problem associated with insufficient data. We hope that these proposed models can help radiologists for a quick diagnosis of pneumonia at radiology departments. Moreover, our proposed models may be useful to detect other chest-related diseases such as novel Coronavirus 2019.

ADVANCES IN KNOWLEDGE

Herein, we used transfer learning as a machine learning approach to accelerate training of the proposed models and resolve the problem associated with insufficient data. Our proposed models achieved accuracy greater than 83.0% for binary classification.

摘要

目的

肺炎是一种肺部感染,会导致一个或两个肺部的小气囊(肺泡)发炎。为了实现最佳的患者护理,早期对肺炎进行适当和快速的诊断至关重要。目前,胸部 X 射线被认为是诊断肺炎的最佳成像方式。然而,胸部 X 射线图像的解释具有挑战性。为此,我们旨在使用基于自动化卷积神经网络的迁移学习方法来检测儿科胸部 X 光片中的肺炎。

方法

在此,我们应用了一种基于自动化卷积神经网络的迁移学习方法,使用了四种不同的预训练模型(VGG19、DenseNet121、Xception 和 ResNet50)来检测儿童(1-5 岁)胸部 X 光片中的肺炎。使用五种性能指标评估不同提出模型对测试数据集的性能,包括准确性、敏感性/召回率、精度、曲线下面积和 F1 分数。

结果

所有提出的模型对于二分类的准确率均大于 83.0%。预训练的 DenseNet121 模型提供了最高的自动化肺炎分类性能,准确率为 86.8%,其次是 Xception 模型,准确率为 86.0%。所提出模型的敏感性均大于 91.0%。Xception 和 DenseNet121 模型的 F1 分数大于 89.0%,达到了最高的分类性能。VGG19、Xception、ResNet50 和 DenseNet121 模型的接收器工作特征曲线下面积分别为 0.78、0.81、0.81 和 0.86。

结论

我们的数据表明,所提出的模型对于二分类具有很高的准确性。迁移学习被用于加速所提出模型的训练,并解决与数据不足相关的问题。我们希望这些提出的模型可以帮助放射科医生在放射科快速诊断肺炎。此外,我们提出的模型可能有助于检测其他与胸部相关的疾病,如新型冠状病毒 2019。

知识的进展

在此,我们使用迁移学习作为机器学习方法来加速所提出模型的训练,并解决与数据不足相关的问题。我们提出的模型对于二分类的准确率大于 83.0%。

相似文献

1
Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images.
Br J Radiol. 2021 May 1;94(1121):20201263. doi: 10.1259/bjr.20201263. Epub 2021 Apr 16.
2
Deep learning-based automatic detection of tuberculosis disease in chest X-ray images.
Pol J Radiol. 2022 Feb 28;87:e118-e124. doi: 10.5114/pjr.2022.113435. eCollection 2022.
3
CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images.
Comput Methods Programs Biomed. 2020 Nov;196:105581. doi: 10.1016/j.cmpb.2020.105581. Epub 2020 Jun 5.
4
Deep-learning based detection of COVID-19 using lung ultrasound imagery.
PLoS One. 2021 Aug 13;16(8):e0255886. doi: 10.1371/journal.pone.0255886. eCollection 2021.
5
A transfer learning method with deep residual network for pediatric pneumonia diagnosis.
Comput Methods Programs Biomed. 2020 Apr;187:104964. doi: 10.1016/j.cmpb.2019.06.023. Epub 2019 Jun 26.
7
A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.
J Adv Res. 2023 Jun;48:191-211. doi: 10.1016/j.jare.2022.08.021. Epub 2022 Sep 7.
8
An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare.
J Healthc Eng. 2019 Mar 27;2019:4180949. doi: 10.1155/2019/4180949. eCollection 2019.
9
Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases.
Comput Biol Med. 2021 May;132:104348. doi: 10.1016/j.compbiomed.2021.104348. Epub 2021 Mar 19.
10
Augmenting Interpretation of Chest Radiographs With Deep Learning Probability Maps.
J Thorac Imaging. 2020 Sep;35(5):285-293. doi: 10.1097/RTI.0000000000000505.

引用本文的文献

2
Identification of Eye Diseases Through Deep Learning.
Diagnostics (Basel). 2025 Apr 2;15(7):916. doi: 10.3390/diagnostics15070916.
3
Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images.
J Med Signals Sens. 2024 Dec 3;14:33. doi: 10.4103/jmss.jmss_47_23. eCollection 2024.
4
Pneumonia detection on chest X-rays from Xception-based transfer learning and logistic regression.
Technol Health Care. 2024;32(6):3847-3870. doi: 10.3233/THC-230313.
6
Using Computer Vision Techniques to Automatically Detect Abnormalities in Chest X-rays.
Diagnostics (Basel). 2023 Sep 18;13(18):2979. doi: 10.3390/diagnostics13182979.
7
Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network.
Pol J Radiol. 2023 Jan 19;88:e31-e40. doi: 10.5114/pjr.2023.124434. eCollection 2023.
9
Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images.
Pol J Radiol. 2022 Aug 26;87:e478-e486. doi: 10.5114/pjr.2022.119027. eCollection 2022.

本文引用的文献

1
Transfer Learning-Based Automatic Detection of Coronavirus Disease 2019 (COVID-19) from Chest X-ray Images.
J Biomed Phys Eng. 2020 Oct 1;10(5):559-568. doi: 10.31661/jbpe.v0i0.2008-1153. eCollection 2020 Oct.
2
Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: A systematic review and meta-analysis.
Comput Biol Med. 2020 Aug;123:103898. doi: 10.1016/j.compbiomed.2020.103898. Epub 2020 Jul 14.
4
Detecting Pneumonia using Convolutions and Dynamic Capsule Routing for Chest X-ray Images.
Sensors (Basel). 2020 Feb 15;20(4):1068. doi: 10.3390/s20041068.
6
A transfer learning method with deep residual network for pediatric pneumonia diagnosis.
Comput Methods Programs Biomed. 2020 Apr;187:104964. doi: 10.1016/j.cmpb.2019.06.023. Epub 2019 Jun 26.
7
Real-Time Smart-Digital Stethoscope System for Heart Diseases Monitoring.
Sensors (Basel). 2019 Jun 20;19(12):2781. doi: 10.3390/s19122781.
8
How far have we come? Artificial intelligence for chest radiograph interpretation.
Clin Radiol. 2019 May;74(5):338-345. doi: 10.1016/j.crad.2018.12.015. Epub 2019 Jan 28.
9
Deep Convolutional Neural Networks for Chest Diseases Detection.
J Healthc Eng. 2018 Aug 1;2018:4168538. doi: 10.1155/2018/4168538. eCollection 2018.
10
Current Applications and Future Impact of Machine Learning in Radiology.
Radiology. 2018 Aug;288(2):318-328. doi: 10.1148/radiol.2018171820. Epub 2018 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验