Suppr超能文献

精准营养:系统文献回顾。

Precision nutrition: A systematic literature review.

机构信息

Information Technology Group, Wageningen University and Research, Wageningen, the Netherlands.

Department of Computer Science and Engineering, Qatar University, Doha, Qatar.

出版信息

Comput Biol Med. 2021 Jun;133:104365. doi: 10.1016/j.compbiomed.2021.104365. Epub 2021 Apr 7.

Abstract

Precision Nutrition research aims to use personal information about individuals or groups of individuals to deliver nutritional advice that, theoretically, would be more suitable than generic advice. Machine learning, a subbranch of Artificial Intelligence, has promise to aid in the development of predictive models that are suitable for Precision Nutrition. As such, recent research has applied machine learning algorithms, tools, and techniques in precision nutrition for different purposes. However, a systematic overview of the state-of-the-art on the use of machine learning in Precision Nutrition is lacking. Therefore, we carried out a Systematic Literature Review (SLR) to provide an overview of where and how machine learning has been used in Precision Nutrition from various aspects, what such machine learning models use as input features, what the availability status of the data used in the literature is, and how the models are evaluated. Nine research questions were defined in this study. We retrieved 4930 papers from electronic databases and 60 primary studies were selected to respond to the research questions. All of the selected primary studies were also briefly discussed in this article. Our results show that fifteen problems spread across seven domains of nutrition and health are present. Four machine learning tasks are seen in the form of regression, classification, recommendation and clustering, with most of these utilizing a supervised approach. In total, 30 algorithms were used, with 19 appearing more than once. Models were through the use of four groups of approaches and 23 evaluation metrics. Personalized approaches are promising to reduce the burden of these current problems in nutrition research, and the current review shows Machine Learning can be incorporated into Precision Nutrition research with high performance. Precision Nutrition researchers should consider incorporating Machine Learning into their methods to facilitate the integration of many complex features, allowing for the development of high-performance Precision Nutrition approaches.

摘要

精准营养研究旨在利用个体或群体的个人信息提供营养建议,理论上,这种建议比通用建议更合适。机器学习是人工智能的一个分支,有望帮助开发适合精准营养的预测模型。因此,最近的研究已经将机器学习算法、工具和技术应用于精准营养的不同目的。然而,缺乏对机器学习在精准营养中应用的最新技术的系统概述。因此,我们进行了系统的文献综述(SLR),以从各个方面概述机器学习在精准营养中的使用情况,包括使用了哪些机器学习模型作为输入特征、文献中使用的数据的可用性状态以及如何评估模型。本研究共定义了 9 个研究问题。我们从电子数据库中检索到 4930 篇论文,并选择了 60 篇主要研究论文来回答研究问题。本文还简要讨论了所有选定的主要研究。我们的研究结果表明,存在十五个分布在七个营养和健康领域的问题。有四种机器学习任务以回归、分类、推荐和聚类的形式出现,其中大多数采用监督式方法。总共使用了 30 种算法,其中 19 种出现了不止一次。模型是通过使用四组方法和 23 种评估指标来构建的。个性化方法有望减轻当前营养研究中这些问题的负担,而当前的综述表明,机器学习可以整合到精准营养研究中,以实现高性能。精准营养研究人员应该考虑将机器学习纳入他们的方法中,以促进许多复杂特征的整合,从而开发出高性能的精准营养方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验