Department of Brain and Cognitive Engineering, Korea University, Republic of Korea.
Department of Brain and Cognitive Engineering, Korea University, Republic of Korea; Department of Artificial Intelligence, Korea University, Republic of Korea.
Neuroimage. 2021 Aug 1;236:118048. doi: 10.1016/j.neuroimage.2021.118048. Epub 2021 Apr 18.
Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely adopted to investigate functional abnormalities in brain diseases. Rs-fMRI data is unsupervised in nature because the psychological and neurological labels are coarse-grained, and no accurate region-wise label is provided along with the complex co-activities of multiple regions. To the best of our knowledge, most studies regarding univariate group analysis or multivariate pattern recognition for brain disease identification have focused on discovering functional characteristics shared across subjects; however, they have paid less attention to individual properties of neural activities that result from different symptoms or degrees of abnormality. In this work, we propose a novel framework that can identify subjects with early-stage mild cognitive impairment (eMCI) and consider individual variability by learning functional relations from automatically selected regions of interest (ROIs) for each subject concurrently. In particular, we devise a deep neural network composed of a temporal embedding module, an ROI selection module, and a disease-identification module. Notably, the ROI selection module is equipped with a reinforcement learning mechanism so it adaptively selects ROIs to facilitate the learning of discriminative feature representations from a temporally embedded blood-oxygen-level-dependent signals. Furthermore, our method allows us to capture the functional relations of a subject-specific ROI subset through the use of a graph-based neural network. Our method considers individual characteristics for diagnosis, as opposed to most conventional methods that identify the same biomarkers across subjects within a group. Based on the ADNI cohort, we validate the effectiveness of our method by presenting the superior performance of our network in eMCI identification. Furthermore, we provide insightful neuroscientific interpretations by analyzing the regions selected for the eMCI classification.
静息态功能磁共振成像(rs-fMRI)已被广泛用于研究脑部疾病的功能异常。由于心理和神经标签是粗粒度的,并且没有为复杂的多个区域的共同活动提供准确的区域级标签,因此 rs-fMRI 数据是无监督的。据我们所知,大多数关于大脑疾病识别的单变量组分析或多变量模式识别的研究都集中在发现跨主题共享的功能特征上;然而,它们较少关注由于不同症状或异常程度而导致的神经活动的个体特性。在这项工作中,我们提出了一种新的框架,可以通过从每个主题的自动选择的感兴趣区域(ROI)中学习功能关系来识别早期轻度认知障碍(eMCI)的主题,并考虑个体变异性。特别是,我们设计了一个由时间嵌入模块、ROI 选择模块和疾病识别模块组成的深度神经网络。值得注意的是,ROI 选择模块配备了强化学习机制,因此可以自适应地选择 ROI,以促进从时间嵌入的血氧水平依赖信号中学习有区别的特征表示。此外,我们的方法允许我们通过使用基于图的神经网络来捕获特定于主体的 ROI 子集的功能关系。我们的方法考虑了诊断的个体特征,而不是大多数传统方法,这些方法在组内的不同主题中识别相同的生物标志物。基于 ADNI 队列,我们通过展示我们的网络在 eMCI 识别中的优越性能来验证我们方法的有效性。此外,我们通过分析为 eMCI 分类选择的区域提供了有见地的神经科学解释。