Suppr超能文献

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的演变:突变综述、宿主免疫系统的作用

Evolution of SARS-CoV-2: Review of Mutations, Role of the Host Immune System.

作者信息

Banoun Helene

机构信息

Independent researcher, Former research fellow at INSERM (French Institute for Health and Medical Research), Marseille, France.

出版信息

Nephron. 2021;145(4):392-403. doi: 10.1159/000515417. Epub 2021 Apr 28.

Abstract

Since the reporting of the first cases of coronavirus in China and the publication of the first sequence of SARS-CoV-2 in December 2019, the virus has undergone numerous mutations. In Europe, the spring outbreak (March-April) was followed by a drop in the number of cases and deaths. The disease may have evolved into a milder form. The increase in PCR-positive cases in late summer 2020 did not lead to the expected increase in hospitalizations, ICU admissions, and deaths, based on the severity of the disease in the spring. This difference in disease severity could be due to factors independent of the virus or to the evolution of the virus. This review attempts to identify the mutations that have appeared since the beginning of the pandemic and their role in the temporal evolution of the pandemic. There are a cell and humoral type cross-reactivity in a large part of the population to common cold coronaviruses (HCoVs) and SARS-CoV-2. Evolutionarily important mutations and deletions have emerged in the SARS-CoV-2 genes encoding proteins that interact with the host immune system. In addition, one of the major mutations (in viral polymerase) is logically associated with a higher frequency of mutations throughout the genome. This frequency fluctuates over time and shows a peak at the time when the epidemic was most active. The rate of mutations in proteins involved in the relationship to the immune system continues to increase after the first outbreak. The cross-reactivity on the 1 hand and the viral mutations observed on the other hand could explain the evolution of the pandemic until the summer of 2020, partly due to the evolution of the virus in relation to the host immune system. The immunization campaign began in December 2020: concerns are emerging about a possible escape of the circulating variants vaccines in early 2021. These variants could also escape immunity acquired through infection with the 2020 strains.

摘要

自中国报告首例冠状病毒病例以及2019年12月公布严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的首个序列以来,该病毒已发生多次突变。在欧洲,春季疫情爆发(3月至4月)之后,病例数和死亡人数有所下降。该疾病可能已演变为一种较轻的形式。基于春季疾病的严重程度,2020年夏末聚合酶链反应(PCR)阳性病例的增加并未导致住院、重症监护病房(ICU)收治人数和死亡人数出现预期的增加。疾病严重程度的这种差异可能是由于与病毒无关的因素,也可能是由于病毒的进化。本综述试图确定自疫情开始以来出现的突变及其在疫情时间演变中的作用。很大一部分人群对普通感冒冠状病毒(HCoVs)和SARS-CoV-2存在细胞和体液类型的交叉反应。在编码与宿主免疫系统相互作用的蛋白质的SARS-CoV-2基因中出现了具有进化重要性的突变和缺失。此外,一个主要突变(在病毒聚合酶中)在逻辑上与整个基因组中更高的突变频率相关。这种频率随时间波动,并在疫情最活跃时达到峰值。首次爆发后,与免疫系统相关的蛋白质中的突变率持续上升。一方面的交叉反应和另一方面观察到的病毒突变可以解释直到2020年夏季疫情的演变,部分原因是病毒相对于宿主免疫系统的进化。免疫接种运动于2020年12月开始:人们开始担心2021年初正在传播的变异株可能会逃避疫苗的作用。这些变异株也可能逃避通过感染2020年毒株获得的免疫力。

相似文献

1
Evolution of SARS-CoV-2: Review of Mutations, Role of the Host Immune System.
Nephron. 2021;145(4):392-403. doi: 10.1159/000515417. Epub 2021 Apr 28.
2
Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants.
Elife. 2020 Oct 28;9:e61312. doi: 10.7554/eLife.61312.
3
Long-Term Evolution of SARS-CoV-2 in an Immunocompromised Patient with Non-Hodgkin Lymphoma.
mSphere. 2021 Aug 25;6(4):e0024421. doi: 10.1128/mSphere.00244-21. Epub 2021 Jul 28.
4
The human microbiota is a beneficial reservoir for SARS-CoV-2 mutations.
mBio. 2024 May 8;15(5):e0318723. doi: 10.1128/mbio.03187-23. Epub 2024 Mar 26.
6
SARS-CoV-2 variants, spike mutations and immune escape.
Nat Rev Microbiol. 2021 Jul;19(7):409-424. doi: 10.1038/s41579-021-00573-0. Epub 2021 Jun 1.
9
The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem.
J Biol Regul Homeost Agents. 2021 Jan-Feb;35(1):1-4. doi: 10.23812/21-3-E.

引用本文的文献

1
Genetic landscape of cancer: mechanisms, key genes, and therapeutic implications.
Clin Transl Oncol. 2025 Aug 17. doi: 10.1007/s12094-025-04019-4.
2
Theoretical Investigation of the Green-Synthesized Carbon-Based Nanomaterial Potential as Inhibitors of ACE2 for Blocking SARS-CoV-2 Binding.
ACS Omega. 2024 Mar 27;9(14):16701-16715. doi: 10.1021/acsomega.4c00759. eCollection 2024 Apr 9.
3
A tool for the cheap and rapid screening of SARS-CoV-2 variants of concern (VoCs) by Sanger sequencing.
Microbiol Spectr. 2023 Sep 7;11(5):e0506422. doi: 10.1128/spectrum.05064-22.
4
Polypharmacology guided drug repositioning approach for SARS-CoV2.
PLoS One. 2023 Aug 9;18(8):e0289890. doi: 10.1371/journal.pone.0289890. eCollection 2023.
6
COVIDSeq as Laboratory Developed Test (LDT) for Diagnosis of SARS-CoV-2 Variants of Concern (VOC).
Arch Clin Biomed Res. 2022;6(6):954-970. doi: 10.26502/acbr.50170309. Epub 2022 Nov 28.
7
Mosaic Recombination Inflicted Various SARS-CoV-2 Lineages to Emerge into Novel Virus Variants: a Review Update.
Indian J Clin Biochem. 2022 Dec 17;38(4):1-8. doi: 10.1007/s12291-022-01109-w.
9
Omicron variant: Current insights and future directions.
Microbiol Res. 2022 Dec;265:127204. doi: 10.1016/j.micres.2022.127204. Epub 2022 Sep 17.
10
Treatment of diabetic foot during the COVID-19 pandemic: A systematic review.
Medicine (Baltimore). 2022 Sep 2;101(35):e30139. doi: 10.1097/MD.0000000000030139.

本文引用的文献

2
The interplay of SARS-CoV-2 evolution and constraints imposed by the structure and functionality of its proteins.
PLoS Comput Biol. 2021 Jul 8;17(7):e1009147. doi: 10.1371/journal.pcbi.1009147. eCollection 2021 Jul.
3
Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies.
Chem Sci. 2021 Apr 13;12(20):6929-6948. doi: 10.1039/d1sc01203g.
5
SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma.
Nat Med. 2021 Apr;27(4):622-625. doi: 10.1038/s41591-021-01285-x. Epub 2021 Mar 2.
6
Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies.
Cell Host Microbe. 2021 Mar 10;29(3):463-476.e6. doi: 10.1016/j.chom.2021.02.003. Epub 2021 Feb 8.
7
Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response.
Cell Host Microbe. 2021 Mar 10;29(3):489-502.e8. doi: 10.1016/j.chom.2021.01.015. Epub 2021 Jan 29.
8
Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape.
Science. 2021 Mar 12;371(6534):1139-1142. doi: 10.1126/science.abf6950. Epub 2021 Feb 3.
9
Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization.
Cell Host Microbe. 2021 Mar 10;29(3):477-488.e4. doi: 10.1016/j.chom.2021.01.014. Epub 2021 Jan 27.
10
Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera.
Science. 2021 Mar 12;371(6534):1152-1153. doi: 10.1126/science.abg6105. Epub 2021 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验