Suppr超能文献

线粒体氨酰-tRNA 合成酶与疾病:酵母在新型变异体功能分析中的贡献。

Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants.

机构信息

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.

出版信息

Int J Mol Sci. 2021 Apr 26;22(9):4524. doi: 10.3390/ijms22094524.

Abstract

In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mt variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast in the functional validation of mutations found in mts genes associated with human disorders.

摘要

在大多数真核生物中,线粒体蛋白合成对于氧化磷酸化(OXPHOS)至关重要,因为呼吸链复合物的一些亚基是由线粒体 DNA(mtDNA)编码的。影响线粒体翻译装置的突变已被确定为线粒体疾病的主要原因。这些突变包括编码线粒体 rRNA(mtrRNA)和 tRNA(mttRNA)的基因中的异质 mtDNA 突变或编码核糖体蛋白、起始、延伸和终止因子、tRNA 修饰酶和氨酰-tRNA 合成酶(mtARSs)的核基因中的突变。氨酰-tRNA 合成酶(ARSs)催化特定氨基酸与它们的同源 tRNA 的连接。与大多数由线粒体基因组编码的 mttRNAs 不同,mtARSs 由核基因编码,然后在细胞质中翻译后被导入线粒体。由于新一代测序(NGS)的广泛使用,近年来已鉴定出越来越多与大临床异质性相关的 mt 变体。由于这些变体大多数是私有或散发性的,因此通过在模型系统中进行功能分析来评估它们在疾病中的因果作用至关重要。这篇综述将重点介绍酵母在功能验证与人类疾病相关的 mts 基因中的突变方面的贡献。

相似文献

3
Mitochondrial aminoacyl-tRNA synthetases in human disease.
Mol Genet Metab. 2013 Apr;108(4):206-11. doi: 10.1016/j.ymgme.2013.01.010. Epub 2013 Jan 26.
4
Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases.
Annu Rev Genet. 2011;45:299-329. doi: 10.1146/annurev-genet-110410-132531. Epub 2011 Sep 6.
5
Role of Mutations of Mitochondrial Aminoacyl-tRNA Synthetases Genes on Epileptogenesis.
Mol Neurobiol. 2023 Sep;60(9):5482-5492. doi: 10.1007/s12035-023-03429-1. Epub 2023 Jun 14.
6
Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria.
Curr Genet. 2009 Feb;55(1):1-18. doi: 10.1007/s00294-008-0223-9. Epub 2008 Dec 16.
7
The role of tRNA synthetases in neurological and neuromuscular disorders.
FEBS Lett. 2018 Mar;592(5):703-717. doi: 10.1002/1873-3468.12962. Epub 2018 Feb 1.
8
Mitochondrial tRNA import and its consequences for mitochondrial translation.
Annu Rev Biochem. 2011;80:1033-53. doi: 10.1146/annurev-biochem-060109-092838.
9
[Progress of research on the genetic diseases caused by variants of mitochondrial aminoacyl-tRNA synthase gene].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2022 Dec 10;39(12):1424-1428. doi: 10.3760/cma.j.cn511374-20211015-00817.
10
Mixing and matching mitochondrial aminoacyl synthetases and their tRNAs: a new way to treat respiratory chain disorders?
EMBO Mol Med. 2014 Feb;6(2):155-7. doi: 10.1002/emmm.201303586. Epub 2014 Jan 28.

引用本文的文献

2
6
Mitochondrial Research: Yeast and Human Cells as Models.
Int J Mol Sci. 2022 Jun 15;23(12):6654. doi: 10.3390/ijms23126654.
7
Disruption of in Cochlear Hair Cells Causes Progressive Mitochondrial Dysfunction and Hearing Loss in Mice.
Front Cell Neurosci. 2021 Dec 15;15:804345. doi: 10.3389/fncel.2021.804345. eCollection 2021.

本文引用的文献

1
LBSL: Case Series and DARS2 Variant Analysis in Early Severe Forms With Unexpected Presentations.
Neurol Genet. 2021 Feb 2;7(2):e559. doi: 10.1212/NXG.0000000000000559. eCollection 2021 Apr.
3
The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases.
Genes (Basel). 2021 Feb 20;12(2):300. doi: 10.3390/genes12020300.
4
Current and Emerging Clinical Treatment in Mitochondrial Disease.
Mol Diagn Ther. 2021 Mar;25(2):181-206. doi: 10.1007/s40291-020-00510-6. Epub 2021 Mar 1.
6
Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNA.
Sci China Life Sci. 2020 Aug;63(8):1227-1239. doi: 10.1007/s11427-019-1619-x. Epub 2020 Mar 13.
7
GARS-related disease in infantile spinal muscular atrophy: Implications for diagnosis and treatment.
Am J Med Genet A. 2020 May;182(5):1167-1176. doi: 10.1002/ajmg.a.61544. Epub 2020 Mar 17.
8
A recurrent missense variant in HARS2 results in variable sensorineural hearing loss in three unrelated families.
J Hum Genet. 2020 Mar;65(3):305-311. doi: 10.1038/s10038-019-0706-1. Epub 2019 Dec 12.
9
Alanyl-tRNA Synthetase 2 (AARS2)-Related Ataxia Without Leukoencephalopathy.
Cerebellum. 2020 Feb;19(1):154-160. doi: 10.1007/s12311-019-01080-y.
10
A recurrent GARS mutation causes distal hereditary motor neuropathy.
J Peripher Nerv Syst. 2019 Dec;24(4):320-323. doi: 10.1111/jns.12353. Epub 2019 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验