Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.
Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
Appl Environ Microbiol. 2021 Jul 13;87(15):e0015521. doi: 10.1128/AEM.00155-21.
Staphylococcus aureus has developed resistance to antimicrobials since their first use. The S. aureus major facilitator superfamily (MFS) efflux pump Tet(K) contributes to resistance to tetracyclines. The efflux pump diminishes antibiotic accumulation, and biofilm hampers the diffusion of antibiotics. None of the currently known compounds have been approved as efflux pump inhibitors (EPIs) for clinical use. In the current study, we screened clinically approved drugs for possible Tet(K) efflux pump inhibition. By performing docking followed by checkerboard assays, we identified five azoles (the fungal ergosterol synthesis inhibitors) showing putative EPI-like potential with a fractional inhibitory concentration index of ≤0.5, indicating synergism. The functionality of the azoles was confirmed using ethidium bromide (EtBr) accumulation and efflux inhibition assays. In time-kill kinetics, the combination treatment with butoconazole engendered a marked increase in the bactericidal capacity of tetracycline. When assessing the off-target effects of the azoles, we observed no disruption of bacterial membrane permeability and polarization. Finally, the combination of azoles with tetracycline led to a significant eradication of preformed mature biofilms. This study demonstrates that azoles can be repurposed as putative Tet(K) EPIs and to reduce biofilm formation at clinically relevant concentrations. Staphylococcus aureus uses efflux pumps to transport antibiotics out of the cell and thus increases the dosage at which it endures antibiotics. Also, efflux pumps play a role in biofilm formation by the excretion of extracellular matrix molecules. One way to combat these pathogens may be to reduce the activity of efflux pumps and thereby increase pathogen sensitivity to existing antibiotics. We describe the -based screen of clinically approved drugs that identified antifungal azoles inhibiting Tet(K), a pump that belongs to the major facilitator superfamily, and showed that these compounds bind to and block the activity of the Tet(K) pump. Azoles enhanced the susceptibility of tetracycline against S. aureus and its methicillin-resistant strains. The combination of azoles with tetracycline led to a significant reduction in preformed biofilms. Repurposing approved drugs may help solve the classical toxicity issues related to efflux pump inhibitors.
金黄色葡萄球菌自首次使用抗生素以来就产生了抗药性。金黄色葡萄球菌主要易化子超家族(MFS)外排泵 Tet(K) 有助于对抗四环素的耐药性。外排泵会减少抗生素的积累,生物膜会阻碍抗生素的扩散。目前尚无已知化合物被批准为临床使用的外排泵抑制剂(EPIs)。在本研究中,我们筛选了临床批准的药物,以寻找可能的 Tet(K) 外排泵抑制剂。通过进行对接和棋盘微量稀释法检测,我们鉴定了五种唑类药物(真菌麦角固醇合成抑制剂),它们具有潜在的 EPI 样作用,其部分抑制浓度指数(FICI)≤0.5,表明具有协同作用。唑类药物的功能通过溴化乙锭(EtBr)积累和外排抑制试验得到了证实。在时间杀伤动力学中,与克霉唑联合治疗显著提高了四环素的杀菌能力。在评估唑类药物的非靶点效应时,我们观察到细菌膜通透性和极化没有受到破坏。最后,唑类药物与四环素联合使用可显著清除已形成的成熟生物膜。本研究表明唑类药物可被重新用于作为潜在的 Tet(K) EPI,并以临床相关浓度减少生物膜的形成。金黄色葡萄球菌利用外排泵将抗生素运出细胞,从而增加其耐受抗生素的剂量。此外,外排泵通过排泄细胞外基质分子在生物膜形成中发挥作用。对抗这些病原体的一种方法可能是降低外排泵的活性,从而提高病原体对现有抗生素的敏感性。我们描述了一种基于 Tet(K) 的筛选方法,该方法筛选了临床批准的药物,发现了抑制 Tet(K) 的抗真菌唑类药物,并且这些化合物与 Tet(K) 泵结合并阻断其活性。唑类药物增加了四环素对金黄色葡萄球菌及其耐甲氧西林菌株的敏感性。唑类药物与四环素联合使用可显著减少已形成的生物膜。重新利用已批准的药物可能有助于解决与外排泵抑制剂相关的经典毒性问题。