Suppr超能文献

抗真菌唑类药物作为金黄色葡萄球菌中环丙沙星耐药性的调节剂。

Antifungal Azoles as Tetracycline Resistance Modifiers in Staphylococcus aureus.

机构信息

Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.

Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.

出版信息

Appl Environ Microbiol. 2021 Jul 13;87(15):e0015521. doi: 10.1128/AEM.00155-21.

Abstract

Staphylococcus aureus has developed resistance to antimicrobials since their first use. The S. aureus major facilitator superfamily (MFS) efflux pump Tet(K) contributes to resistance to tetracyclines. The efflux pump diminishes antibiotic accumulation, and biofilm hampers the diffusion of antibiotics. None of the currently known compounds have been approved as efflux pump inhibitors (EPIs) for clinical use. In the current study, we screened clinically approved drugs for possible Tet(K) efflux pump inhibition. By performing docking followed by checkerboard assays, we identified five azoles (the fungal ergosterol synthesis inhibitors) showing putative EPI-like potential with a fractional inhibitory concentration index of ≤0.5, indicating synergism. The functionality of the azoles was confirmed using ethidium bromide (EtBr) accumulation and efflux inhibition assays. In time-kill kinetics, the combination treatment with butoconazole engendered a marked increase in the bactericidal capacity of tetracycline. When assessing the off-target effects of the azoles, we observed no disruption of bacterial membrane permeability and polarization. Finally, the combination of azoles with tetracycline led to a significant eradication of preformed mature biofilms. This study demonstrates that azoles can be repurposed as putative Tet(K) EPIs and to reduce biofilm formation at clinically relevant concentrations. Staphylococcus aureus uses efflux pumps to transport antibiotics out of the cell and thus increases the dosage at which it endures antibiotics. Also, efflux pumps play a role in biofilm formation by the excretion of extracellular matrix molecules. One way to combat these pathogens may be to reduce the activity of efflux pumps and thereby increase pathogen sensitivity to existing antibiotics. We describe the -based screen of clinically approved drugs that identified antifungal azoles inhibiting Tet(K), a pump that belongs to the major facilitator superfamily, and showed that these compounds bind to and block the activity of the Tet(K) pump. Azoles enhanced the susceptibility of tetracycline against S. aureus and its methicillin-resistant strains. The combination of azoles with tetracycline led to a significant reduction in preformed biofilms. Repurposing approved drugs may help solve the classical toxicity issues related to efflux pump inhibitors.

摘要

金黄色葡萄球菌自首次使用抗生素以来就产生了抗药性。金黄色葡萄球菌主要易化子超家族(MFS)外排泵 Tet(K) 有助于对抗四环素的耐药性。外排泵会减少抗生素的积累,生物膜会阻碍抗生素的扩散。目前尚无已知化合物被批准为临床使用的外排泵抑制剂(EPIs)。在本研究中,我们筛选了临床批准的药物,以寻找可能的 Tet(K) 外排泵抑制剂。通过进行对接和棋盘微量稀释法检测,我们鉴定了五种唑类药物(真菌麦角固醇合成抑制剂),它们具有潜在的 EPI 样作用,其部分抑制浓度指数(FICI)≤0.5,表明具有协同作用。唑类药物的功能通过溴化乙锭(EtBr)积累和外排抑制试验得到了证实。在时间杀伤动力学中,与克霉唑联合治疗显著提高了四环素的杀菌能力。在评估唑类药物的非靶点效应时,我们观察到细菌膜通透性和极化没有受到破坏。最后,唑类药物与四环素联合使用可显著清除已形成的成熟生物膜。本研究表明唑类药物可被重新用于作为潜在的 Tet(K) EPI,并以临床相关浓度减少生物膜的形成。金黄色葡萄球菌利用外排泵将抗生素运出细胞,从而增加其耐受抗生素的剂量。此外,外排泵通过排泄细胞外基质分子在生物膜形成中发挥作用。对抗这些病原体的一种方法可能是降低外排泵的活性,从而提高病原体对现有抗生素的敏感性。我们描述了一种基于 Tet(K) 的筛选方法,该方法筛选了临床批准的药物,发现了抑制 Tet(K) 的抗真菌唑类药物,并且这些化合物与 Tet(K) 泵结合并阻断其活性。唑类药物增加了四环素对金黄色葡萄球菌及其耐甲氧西林菌株的敏感性。唑类药物与四环素联合使用可显著减少已形成的生物膜。重新利用已批准的药物可能有助于解决与外排泵抑制剂相关的经典毒性问题。

相似文献

1
Antifungal Azoles as Tetracycline Resistance Modifiers in Staphylococcus aureus.
Appl Environ Microbiol. 2021 Jul 13;87(15):e0015521. doi: 10.1128/AEM.00155-21.
2
Repurposing Approved Drugs as Fluoroquinolone Potentiators to Overcome Efflux Pump Resistance in Staphylococcus aureus.
Microbiol Spectr. 2021 Dec 22;9(3):e0095121. doi: 10.1128/Spectrum.00951-21. Epub 2021 Dec 15.
3
Bioflavonoid Baicalein Modulates Tetracycline Resistance by Inhibiting Efflux Pump in .
Microb Drug Resist. 2024 Sep;30(9):363-371. doi: 10.1089/mdr.2024.0099. Epub 2024 Aug 12.
6
Clinically Approved Drugs Inhibit the Multidrug NorA Efflux Pump and Reduce Biofilm Formation.
Front Microbiol. 2019 Dec 3;10:2762. doi: 10.3389/fmicb.2019.02762. eCollection 2019.
9
1,3,4-oxadiazole conjugates of capsaicin as potent NorA efflux pump inhibitors of Staphylococcus aureus.
Bioorg Chem. 2021 Aug;113:105031. doi: 10.1016/j.bioorg.2021.105031. Epub 2021 May 27.
10

引用本文的文献

1
2
Consumption of non-antibacterial drugs may have negative impact on colonization in the stomach.
Heliyon. 2024 Mar 4;10(5):e27327. doi: 10.1016/j.heliyon.2024.e27327. eCollection 2024 Mar 15.
3
Evaluation of the Antibacterial Effect of Aurone-Derived Triazoles on .
Antibiotics (Basel). 2023 Aug 26;12(9):1370. doi: 10.3390/antibiotics12091370.
4
Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant .
Infect Drug Resist. 2023 May 25;16:3271-3292. doi: 10.2147/IDR.S412308. eCollection 2023.
5
Transcriptomic and Proteomic Analysis of Responding to Acidic pH and Hydrogen Peroxide Stress.
Microorganisms. 2023 Mar 8;11(3):695. doi: 10.3390/microorganisms11030695.
6
The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen .
Antibiotics (Basel). 2023 Feb 7;12(2):343. doi: 10.3390/antibiotics12020343.
7
Repurposing Approved Drugs as Fluoroquinolone Potentiators to Overcome Efflux Pump Resistance in Staphylococcus aureus.
Microbiol Spectr. 2021 Dec 22;9(3):e0095121. doi: 10.1128/Spectrum.00951-21. Epub 2021 Dec 15.

本文引用的文献

1
Inhibition of Staphylococcus aureus TetK and MsrA efflux pumps by hydroxyamines derived from lapachol and norlachol.
J Bioenerg Biomembr. 2021 Apr;53(2):149-156. doi: 10.1007/s10863-021-09885-5. Epub 2021 Feb 26.
3
Effect of α-Bisabolol and Its β-Cyclodextrin Complex as TetK and NorA Efflux Pump Inhibitors in Strains.
Antibiotics (Basel). 2020 Jan 14;9(1):28. doi: 10.3390/antibiotics9010028.
4
Baicalin Inhibits Biofilm Formation and the Quorum-Sensing System by Regulating the MsrA Drug Efflux Pump in .
Front Microbiol. 2019 Dec 10;10:2800. doi: 10.3389/fmicb.2019.02800. eCollection 2019.
5
Clinically Approved Drugs Inhibit the Multidrug NorA Efflux Pump and Reduce Biofilm Formation.
Front Microbiol. 2019 Dec 3;10:2762. doi: 10.3389/fmicb.2019.02762. eCollection 2019.
6
Lysine-Based Small Molecule Sensitizes Rifampicin and Tetracycline against Multidrug-Resistant and .
ACS Infect Dis. 2020 Jan 10;6(1):91-99. doi: 10.1021/acsinfecdis.9b00221. Epub 2019 Nov 19.
7
Microbe-Derived Indole Metabolite Demonstrates Potent Multidrug Efflux Pump Inhibition in .
Front Microbiol. 2019 Sep 18;10:2153. doi: 10.3389/fmicb.2019.02153. eCollection 2019.
8
A novel mechanism of action of ketoconazole: inhibition of the efflux pump system and biofilm formation in multidrug-resistant .
Infect Drug Resist. 2019 Jun 14;12:1703-1718. doi: 10.2147/IDR.S201124. eCollection 2019.
9
Tridecaptin M, a New Variant Discovered in Mud Bacterium, Shows Activity against Colistin- and Extremely Drug-Resistant .
Antimicrob Agents Chemother. 2019 May 24;63(6). doi: 10.1128/AAC.00338-19. Print 2019 Jun.
10
In-vitro studies on a natural lantibiotic, paenibacillin: A new-generation antibacterial drug candidate to overcome multi-drug resistance.
Int J Antimicrob Agents. 2019 Jun;53(6):838-843. doi: 10.1016/j.ijantimicag.2019.03.020. Epub 2019 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验