Suppr超能文献

消除缺氧肿瘤细胞可提高同源重组缺陷型癌症模型对 PARP 抑制剂的反应。

Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination-deficient cancer models.

机构信息

Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA.

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA.

出版信息

J Clin Invest. 2021 Jun 1;131(11). doi: 10.1172/JCI146256.

Abstract

Hypoxia, a hallmark feature of the tumor microenvironment, causes resistance to conventional chemotherapy, but was recently reported to synergize with poly(ADP-ribose) polymerase inhibitors (PARPis) in homologous recombination-proficient (HR-proficient) cells through suppression of HR. While this synergistic killing occurs under severe hypoxia (<0.5% oxygen), our study shows that moderate hypoxia (2% oxygen) instead promotes PARPi resistance in both HR-proficient and -deficient cancer cells. Mechanistically, we identify reduced ROS-induced DNA damage as the cause for the observed resistance. To determine the contribution of hypoxia to PARPi resistance in tumors, we used the hypoxic cytotoxin tirapazamine to selectively kill hypoxic tumor cells. We found that the selective elimination of hypoxic tumor cells led to a substantial antitumor response when used with PARPi compared with that in tumors treated with PARPi alone, without enhancing normal tissue toxicity. Since human breast cancers with BRAC1/2 mutations have an increased hypoxia signature and hypoxia reduces the efficacy of PARPi, then eliminating hypoxic tumor cells should enhance the efficacy of PARPi therapy.

摘要

缺氧是肿瘤微环境的一个标志性特征,会导致对常规化疗产生耐药性,但最近有报道称,在同源重组功能正常(HR 功能正常)的细胞中,缺氧与聚(ADP-核糖)聚合酶抑制剂(PARPi)协同作用,通过抑制 HR 来实现协同杀伤。虽然这种协同杀伤作用发生在严重缺氧(<0.5%氧气)下,但我们的研究表明,中度缺氧(2%氧气)反而会在 HR 功能正常和缺陷的癌细胞中促进 PARPi 耐药性。从机制上讲,我们发现 ROS 诱导的 DNA 损伤减少是导致观察到的耐药性的原因。为了确定缺氧对肿瘤中 PARPi 耐药性的贡献,我们使用缺氧细胞毒素替拉扎胺选择性地杀死缺氧肿瘤细胞。我们发现,与单独使用 PARPi 治疗的肿瘤相比,与 PARPi 联合使用时,选择性消除缺氧肿瘤细胞会导致显著的抗肿瘤反应,而不会增强正常组织毒性。由于具有 BRAC1/2 突变的人类乳腺癌具有增加的缺氧特征,并且缺氧会降低 PARPi 的疗效,因此消除缺氧肿瘤细胞应该会增强 PARPi 治疗的疗效。

相似文献

2
The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer.
Gynecol Oncol. 2018 Jun;149(3):575-584. doi: 10.1016/j.ygyno.2018.03.049. Epub 2018 Mar 20.
3
Repression of PFKFB3 sensitizes ovarian cancer to PARP inhibitors by impairing homologous recombination repair.
Cell Commun Signal. 2025 Jan 25;23(1):48. doi: 10.1186/s12964-025-02056-8.
5
Targeting autophagy reverses de novo resistance in homologous recombination repair proficient breast cancers to PARP inhibition.
Br J Cancer. 2021 Mar;124(7):1260-1274. doi: 10.1038/s41416-020-01238-0. Epub 2021 Jan 21.
8
An Effective Epigenetic-PARP Inhibitor Combination Therapy for Breast and Ovarian Cancers Independent of BRCA Mutations.
Clin Cancer Res. 2018 Jul 1;24(13):3163-3175. doi: 10.1158/1078-0432.CCR-18-0204. Epub 2018 Apr 3.
9
Entinostat, a selective HDAC1/2 inhibitor, potentiates the effects of olaparib in homologous recombination proficient ovarian cancer.
Gynecol Oncol. 2021 Jul;162(1):163-172. doi: 10.1016/j.ygyno.2021.04.015. Epub 2021 Apr 16.

引用本文的文献

1
The distinct landscape of tumor immune microenvironment in homologous recombination deficient cancers.
Biomark Res. 2025 Aug 20;13(1):108. doi: 10.1186/s40364-025-00814-x.
3
Reversing regulatory safeguards: Targeting the ATR pathway to overcome PARP inhibitor resistance.
Mol Ther Oncol. 2025 Jan 14;33(1):200934. doi: 10.1016/j.omton.2025.200934. eCollection 2025 Mar 20.
4
Tumour hypoxia in driving genomic instability and tumour evolution.
Nat Rev Cancer. 2025 Mar;25(3):167-188. doi: 10.1038/s41568-024-00781-9. Epub 2025 Jan 28.
5
Hypoxia-Responsive Prodrug of ATR Inhibitor, AZD6738, Selectively Eradicates Treatment-Resistant Cancer Cells.
Adv Sci (Weinh). 2024 Sep;11(34):e2403831. doi: 10.1002/advs.202403831. Epub 2024 Jul 8.
6
Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours.
Front Oncol. 2024 Jan 30;14:1331355. doi: 10.3389/fonc.2024.1331355. eCollection 2024.
7
Exploiting the DNA Damage Response for Prostate Cancer Therapy.
Cancers (Basel). 2023 Dec 23;16(1):83. doi: 10.3390/cancers16010083.
8
Multi-scale characterisation of homologous recombination deficiency in breast cancer.
Genome Med. 2023 Nov 2;15(1):90. doi: 10.1186/s13073-023-01239-7.
10
Mechanism of PARP inhibitor resistance and potential overcoming strategies.
Genes Dis. 2023 Mar 24;11(1):306-320. doi: 10.1016/j.gendis.2023.02.014. eCollection 2024 Jan.

本文引用的文献

1
Hypoxia-activated prodrugs and (lack of) clinical progress: The need for hypoxia-based biomarker patient selection in phase III clinical trials.
Clin Transl Radiat Oncol. 2019 Jan 18;15:62-69. doi: 10.1016/j.ctro.2019.01.005. eCollection 2019 Feb.
2
Mechanisms of PARP inhibitor sensitivity and resistance.
DNA Repair (Amst). 2018 Nov;71:172-176. doi: 10.1016/j.dnarep.2018.08.021. Epub 2018 Aug 23.
3
High speed of fork progression induces DNA replication stress and genomic instability.
Nature. 2018 Jul;559(7713):279-284. doi: 10.1038/s41586-018-0261-5. Epub 2018 Jun 27.
4
Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality.
Cancer Cell. 2018 Jun 11;33(6):1078-1093.e12. doi: 10.1016/j.ccell.2018.05.008.
5
PARP inhibitors: Synthetic lethality in the clinic.
Science. 2017 Mar 17;355(6330):1152-1158. doi: 10.1126/science.aam7344. Epub 2017 Mar 16.
7
Targeting DNA Repair in Cancer: Beyond PARP Inhibitors.
Cancer Discov. 2017 Jan;7(1):20-37. doi: 10.1158/2159-8290.CD-16-0860. Epub 2016 Dec 21.
8
Cytotoxicity of Tirapazamine (3-Amino-1,2,4-benzotriazine-1,4-dioxide)-Induced DNA Damage in Chicken DT40 Cells.
Chem Res Toxicol. 2017 Feb 20;30(2):699-704. doi: 10.1021/acs.chemrestox.6b00417. Epub 2016 Dec 27.
9
A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds.
Cell. 2016 Sep 22;167(1):260-274.e22. doi: 10.1016/j.cell.2016.08.041. Epub 2016 Sep 15.
10
Combenefit: an interactive platform for the analysis and visualization of drug combinations.
Bioinformatics. 2016 Sep 15;32(18):2866-8. doi: 10.1093/bioinformatics/btw230. Epub 2016 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验