Suppr超能文献

人类麻风肉芽肿中抗菌反应网络的细胞结构。

The cellular architecture of the antimicrobial response network in human leprosy granulomas.

机构信息

Division of Dermatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.

Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

Nat Immunol. 2021 Jul;22(7):839-850. doi: 10.1038/s41590-021-00956-8. Epub 2021 Jun 24.

Abstract

Granulomas are complex cellular structures composed predominantly of macrophages and lymphocytes that function to contain and kill invading pathogens. Here, we investigated the single-cell phenotypes associated with antimicrobial responses in human leprosy granulomas by applying single-cell and spatial sequencing to leprosy biopsy specimens. We focused on reversal reactions (RRs), a dynamic process whereby some patients with disseminated lepromatous leprosy (L-lep) transition toward self-limiting tuberculoid leprosy (T-lep), mounting effective antimicrobial responses. We identified a set of genes encoding proteins involved in antimicrobial responses that are differentially expressed in RR versus L-lep lesions and regulated by interferon-γ and interleukin-1β. By integrating the spatial coordinates of the key cell types and antimicrobial gene expression in RR and T-lep lesions, we constructed a map revealing the organized architecture of granulomas depicting compositional and functional layers by which macrophages, T cells, keratinocytes and fibroblasts can each contribute to the antimicrobial response.

摘要

肉芽肿是由巨噬细胞和淋巴细胞组成的复杂细胞结构,其功能是容纳和杀死入侵的病原体。在这里,我们通过对麻风活检标本进行单细胞和空间测序,研究了与人类麻风肉芽肿中抗微生物反应相关的单细胞表型。我们专注于逆转反应(RR),这是一个动态过程,在此过程中,一些患有弥漫性瘤型麻风(L-lep)的患者向自限性结核样麻风(T-lep)转变,产生有效的抗微生物反应。我们鉴定了一组编码参与抗微生物反应的蛋白质的基因,这些基因在 RR 与 L-lep 病变中的表达存在差异,并受干扰素-γ和白细胞介素-1β的调节。通过整合 RR 和 T-lep 病变中关键细胞类型和抗微生物基因表达的空间坐标,我们构建了一张地图,揭示了肉芽肿的组织架构,通过该架构,巨噬细胞、T 细胞、角质形成细胞和成纤维细胞可以各自为抗微生物反应做出贡献,描绘了组成和功能层。

相似文献

1
The cellular architecture of the antimicrobial response network in human leprosy granulomas.
Nat Immunol. 2021 Jul;22(7):839-850. doi: 10.1038/s41590-021-00956-8. Epub 2021 Jun 24.
2
In situ demonstration of Mycobacterium leprae antigens in leprosy lesions using monoclonal antibodies.
Immunol Lett. 1990 Jun;24(3):179-83. doi: 10.1016/0165-2478(90)90045-r.
3
Nodular leprosy of childhood and tuberculoid leprosy: a comparative, morphologic, immunopathologic and quantitative study of skin tissue reaction.
Int J Lepr Other Mycobact Dis. 2003 Sep;71(3):218-26. doi: 10.1489/1544-581x(2003)71<218:nlocat>2.0.co;2.
8
Ultrastructural characteristics of macrophages in dermal leprosy granulomas: macrophages in leprosy granulomas.
Nihon Rai Gakkai Zasshi. 1989 Jul-Sep;58(3):185-90. doi: 10.5025/hansen1977.58.185.
9
Immunohistochemical characterization of the M4 macrophage population in leprosy skin lesions.
BMC Infect Dis. 2018 Nov 15;18(1):576. doi: 10.1186/s12879-018-3478-x.
10
Immune regulation: learning from leprosy.
Hosp Pract (Off Ed). 1993 Nov 15;28(11):71-4, 77-80, 83-4. doi: 10.1080/21548331.1993.11442874.

引用本文的文献

1
Sustained neutrophil infiltration and bacterial grain morphology underlie chronic mycetoma pathology in a murine model.
Iran J Basic Med Sci. 2025;28(9):1268-1278. doi: 10.22038/ijbms.2025.87349.18875.
2
Dynamics of Th1/Th17 responses and antimicrobial pathways in leprosy skin lesions.
J Clin Invest. 2025 Jun 26;135(17). doi: 10.1172/JCI190736. eCollection 2025 Sep 2.
3
Insights into early acne pathogenesis: Exploring intercellular dynamics and key dysregulated genes.
Cell Signal (Middlet). 2025;3(1):32-39. doi: 10.46439/signaling.3.053.
4
The spatial and single-cell landscape of skin: Charting the multiscale regulation of skin immune function.
Semin Immunol. 2025 Jun;78:101958. doi: 10.1016/j.smim.2025.101958. Epub 2025 Apr 22.
5
Revisiting the cancer microbiome using PRISM.
bioRxiv. 2025 Jan 24:2025.01.21.634087. doi: 10.1101/2025.01.21.634087.
6
A high-resolution view of the immune and stromal cell response to infection in human volunteers.
mBio. 2025 Mar 12;16(3):e0388524. doi: 10.1128/mbio.03885-24. Epub 2025 Jan 30.
7
High-dose intravenous BCG vaccination induces enhanced immune signaling in the airways.
Sci Adv. 2025 Jan 3;11(1):eadq8229. doi: 10.1126/sciadv.adq8229. Epub 2025 Jan 1.
8
Probing Dermal Immunity to Mycobacteria through a Controlled Human Infection Model.
Immunohorizons. 2024 Sep 1;8(9):695-711. doi: 10.4049/immunohorizons.2400053.
10
Type 1 innate lymphoid cells: a biomarker and therapeutic candidate in sarcoidosis.
J Clin Invest. 2024 Sep 3;134(17):e183708. doi: 10.1172/JCI183708.

本文引用的文献

1
SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data.
Gigascience. 2020 Dec 26;9(12). doi: 10.1093/gigascience/giaa151.
2
The immune landscape in tuberculosis reveals populations linked to disease and latency.
Cell Host Microbe. 2021 Feb 10;29(2):165-178.e8. doi: 10.1016/j.chom.2020.11.013. Epub 2020 Dec 18.
3
Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming.
Commun Biol. 2020 Apr 23;3(1):188. doi: 10.1038/s42003-020-0922-4.
4
Cellular, Molecular, and Immunological Characteristics of Langhans Multinucleated Giant Cells Programmed by IL-15.
J Invest Dermatol. 2020 Sep;140(9):1824-1836.e7. doi: 10.1016/j.jid.2020.01.026. Epub 2020 Feb 22.
5
Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis.
J Allergy Clin Immunol. 2020 Jun;145(6):1615-1628. doi: 10.1016/j.jaci.2020.01.042. Epub 2020 Feb 7.
6
Transcriptome landscape of myeloid cells in human skin reveals diversity, rare populations and putative DC progenitors.
J Dermatol Sci. 2020 Jan;97(1):41-49. doi: 10.1016/j.jdermsci.2019.11.012. Epub 2019 Nov 29.
7
Identification of a systemic interferon-γ inducible antimicrobial gene signature in leprosy patients undergoing reversal reaction.
PLoS Negl Trop Dis. 2019 Oct 10;13(10):e0007764. doi: 10.1371/journal.pntd.0007764. eCollection 2019 Oct.
8
9
Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner.
Cell. 2019 Jul 25;178(3):686-698.e14. doi: 10.1016/j.cell.2019.05.054. Epub 2019 Jun 27.
10
IL-26 contributes to host defense against intracellular bacteria.
J Clin Invest. 2019 Apr 2;129(5):1926-1939. doi: 10.1172/JCI99550.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验