Suppr超能文献

利用 CRISPRi 筛选、靶标文库分析和机器学习开发的高效 C•G 到 G•C 碱基编辑器。

Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning.

机构信息

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

出版信息

Nat Biotechnol. 2021 Nov;39(11):1414-1425. doi: 10.1038/s41587-021-00938-z. Epub 2021 Jun 28.

Abstract

Programmable C•G-to-G•C base editors (CGBEs) have broad scientific and therapeutic potential, but their editing outcomes have proved difficult to predict and their editing efficiency and product purity are often low. We describe a suite of engineered CGBEs paired with machine learning models to enable efficient, high-purity C•G-to-G•C base editing. We performed a CRISPR interference (CRISPRi) screen targeting DNA repair genes to identify factors that affect C•G-to-G•C editing outcomes and used these insights to develop CGBEs with diverse editing profiles. We characterized ten promising CGBEs on a library of 10,638 genomically integrated target sites in mammalian cells and trained machine learning models that accurately predict the purity and yield of editing outcomes (R = 0.90) using these data. These CGBEs enable correction to the wild-type coding sequence of 546 disease-related transversion single-nucleotide variants (SNVs) with >90% precision (mean 96%) and up to 70% efficiency (mean 14%). Computational prediction of optimal CGBE-single-guide RNA pairs enables high-purity transversion base editing at over fourfold more target sites than achieved using any single CGBE variant.

摘要

可编程 C•G 到 G•C 碱基编辑器(CGBEs)具有广泛的科学和治疗潜力,但它们的编辑结果很难预测,而且编辑效率和产物纯度通常较低。我们描述了一套经过工程改造的 CGBEs 与机器学习模型相结合,以实现高效、高纯度的 C•G 到 G•C 碱基编辑。我们进行了针对 DNA 修复基因的 CRISPR 干扰(CRISPRi)筛选,以鉴定影响 C•G 到 G•C 编辑结果的因素,并利用这些见解开发了具有不同编辑谱的 CGBEs。我们在哺乳动物细胞中对 10638 个基因组整合的靶位点文库上对十种有前途的 CGBEs 进行了表征,并使用这些数据训练了机器学习模型,这些模型可以准确预测编辑结果的纯度和产量(R=0.90)。这些 CGBEs 能够纠正 546 种与疾病相关的颠换单核苷酸变异(SNVs)的野生型编码序列,准确率超过 90%(平均 96%),效率高达 70%(平均 14%)。最佳 CGBE-单指导 RNA 对的计算预测可实现四倍以上的目标位点的高纯度颠换碱基编辑,这一数量超过了任何单个 CGBE 变体所能实现的数量。

相似文献

1
Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning.
Nat Biotechnol. 2021 Nov;39(11):1414-1425. doi: 10.1038/s41587-021-00938-z. Epub 2021 Jun 28.
2
Generation of C-to-G transversion in mouse embryos via CG editors.
Transgenic Res. 2022 Oct;31(4-5):445-455. doi: 10.1007/s11248-022-00313-x. Epub 2022 Jun 15.
3
CRISPR single base-editing: in silico predictions to variant clonal cell lines.
Hum Mol Genet. 2023 Aug 26;32(17):2704-2716. doi: 10.1093/hmg/ddad105.
5
Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning.
Cell. 2020 Jul 23;182(2):463-480.e30. doi: 10.1016/j.cell.2020.05.037. Epub 2020 Jun 12.
7
[Advances in base editing systems].
Sheng Wu Gong Cheng Xue Bao. 2024 May 25;40(5):1271-1292. doi: 10.13345/j.cjb.230615.
9
Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
Int J Mol Sci. 2022 Jul 20;23(14):7990. doi: 10.3390/ijms23147990.
10
Exploring C-To-G Base Editing in Rice, Tomato, and Poplar.
Front Genome Ed. 2021 Sep 15;3:756766. doi: 10.3389/fgeed.2021.756766. eCollection 2021.

引用本文的文献

1
AI-guided Cas9 engineering provides an effective strategy to enhance base editing.
Mol Syst Biol. 2025 Sep 15. doi: 10.1038/s44320-025-00142-0.
2
A series of precise and controllable base editors with split-TadA-8e.
Mol Ther Nucleic Acids. 2025 Aug 12;36(3):102672. doi: 10.1016/j.omtn.2025.102672. eCollection 2025 Sep 9.
3
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.
Iran J Basic Med Sci. 2025;28(10):1279-1300. doi: 10.22038/ijbms.2025.87531.18902.
4
BioFuse: A programmable timer switch of gene expression.
Sci Adv. 2025 Aug 29;11(35):eadv7892. doi: 10.1126/sciadv.adv7892. Epub 2025 Aug 27.
5
Genome Editing Breeding with CRISPR-Cas Nucleases, Base Editors, and Prime Editors.
Animals (Basel). 2025 Jul 22;15(15):2161. doi: 10.3390/ani15152161.
7
Revolutionizing CRISPR technology with artificial intelligence.
Exp Mol Med. 2025 Jul;57(7):1419-1431. doi: 10.1038/s12276-025-01462-9. Epub 2025 Jul 31.
9
Toward optimizing diversifying base editors for high-throughput mutational scanning studies.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf620.
10
Charting the development and engineering of CRISPR base editors: lessons and inspirations.
Cell Chem Biol. 2025 Jun 19;32(6):789-808. doi: 10.1016/j.chembiol.2025.05.003. Epub 2025 Jun 5.

本文引用的文献

1
Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins.
Nat Commun. 2021 Mar 2;12(1):1384. doi: 10.1038/s41467-021-21559-9.
2
The ubiquitin ligase RFWD3 is required for translesion DNA synthesis.
Mol Cell. 2021 Feb 4;81(3):442-458.e9. doi: 10.1016/j.molcel.2020.11.029. Epub 2020 Dec 14.
3
CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
Nat Biotechnol. 2021 Jan;39(1):41-46. doi: 10.1038/s41587-020-0609-x. Epub 2020 Jul 20.
4
Glycosylase base editors enable C-to-A and C-to-G base changes.
Nat Biotechnol. 2021 Jan;39(1):35-40. doi: 10.1038/s41587-020-0592-2. Epub 2020 Jul 20.
5
A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
Nature. 2020 Jul;583(7817):631-637. doi: 10.1038/s41586-020-2477-4. Epub 2020 Jul 8.
6
Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
Nat Biotechnol. 2020 Jul;38(7):824-844. doi: 10.1038/s41587-020-0561-9. Epub 2020 Jun 22.
7
Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning.
Cell. 2020 Jul 23;182(2):463-480.e30. doi: 10.1016/j.cell.2020.05.037. Epub 2020 Jun 12.
8
Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity.
Nat Biotechnol. 2020 Jul;38(7):883-891. doi: 10.1038/s41587-020-0453-z. Epub 2020 Mar 16.
9
Directed evolution of adenine base editors with increased activity and therapeutic application.
Nat Biotechnol. 2020 Jul;38(7):892-900. doi: 10.1038/s41587-020-0491-6. Epub 2020 Apr 13.
10
Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses.
Nat Biomed Eng. 2020 Jan;4(1):97-110. doi: 10.1038/s41551-019-0501-5. Epub 2020 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验