Suppr超能文献

一项旨在实现瑞士个性化健康网络内研究的健康数据二次使用互操作性的全国性、语义驱动的三支柱战略:方法学研究。

A National, Semantic-Driven, Three-Pillar Strategy to Enable Health Data Secondary Usage Interoperability for Research Within the Swiss Personalized Health Network: Methodological Study.

作者信息

Gaudet-Blavignac Christophe, Raisaro Jean Louis, Touré Vasundra, Österle Sabine, Crameri Katrin, Lovis Christian

机构信息

Division of Medical Information Sciences, Geneva University Hospitals, Geneva, Switzerland.

Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.

出版信息

JMIR Med Inform. 2021 Jun 24;9(6):e27591. doi: 10.2196/27591.

Abstract

BACKGROUND

Interoperability is a well-known challenge in medical informatics. Current trends in interoperability have moved from a data model technocentric approach to sustainable semantics, formal descriptive languages, and processes. Despite many initiatives and investments for decades, the interoperability challenge remains crucial. The need for data sharing for most purposes ranging from patient care to secondary uses, such as public health, research, and quality assessment, faces unmet problems.

OBJECTIVE

This work was performed in the context of a large Swiss Federal initiative aiming at building a national infrastructure for reusing consented data acquired in the health care and research system to enable research in the field of personalized medicine in Switzerland. The initiative is the Swiss Personalized Health Network (SPHN). This initiative is providing funding to foster use and exchange of health-related data for research. As part of the initiative, a national strategy to enable a semantically interoperable clinical data landscape was developed and implemented.

METHODS

A deep analysis of various approaches to address interoperability was performed at the start, including large frameworks in health care, such as Health Level Seven (HL7) and Integrating Healthcare Enterprise (IHE), and in several domains, such as regulatory agencies (eg, Clinical Data Interchange Standards Consortium [CDISC]) and research communities (eg, Observational Medical Outcome Partnership [OMOP]), to identify bottlenecks and assess sustainability. Based on this research, a strategy composed of three pillars was designed. It has strong multidimensional semantics, descriptive formal language for exchanges, and as many data models as needed to comply with the needs of various communities.

RESULTS

This strategy has been implemented stepwise in Switzerland since the middle of 2019 and has been adopted by all university hospitals and high research organizations. The initiative is coordinated by a central organization, the SPHN Data Coordination Center of the SIB Swiss Institute of Bioinformatics. The semantics is mapped by domain experts on various existing standards, such as Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), Logical Observation Identifiers Names and Codes (LOINC), and International Classification of Diseases (ICD). The resource description framework (RDF) is used for storing and transporting data, and to integrate information from different sources and standards. Data transformers based on SPARQL query language are implemented to convert RDF representations to the numerous data models required by the research community or bridge with other systems, such as electronic case report forms.

CONCLUSIONS

The SPHN strategy successfully implemented existing standards in a pragmatic and applicable way. It did not try to build any new standards but used existing ones in a nondogmatic way. It has now been funded for another 4 years, bringing the Swiss landscape into a new dimension to support research in the field of personalized medicine and large interoperable clinical data.

摘要

背景

互操作性是医学信息学中一个众所周知的挑战。当前互操作性的趋势已从以数据模型为中心的技术方法转向可持续语义、形式化描述语言和流程。尽管数十年来有许多举措和投资,但互操作性挑战仍然至关重要。从患者护理到公共卫生、研究和质量评估等二次利用等大多数目的的数据共享需求面临着尚未解决的问题。

目的

这项工作是在瑞士联邦一项大型倡议的背景下开展的,该倡议旨在建立一个国家基础设施,以重用在医疗保健和研究系统中获取的已获同意的数据,从而推动瑞士个性化医疗领域的研究。该倡议即瑞士个性化健康网络(SPHN)。该倡议正在提供资金,以促进与健康相关的数据用于研究的使用和交换。作为该倡议的一部分,制定并实施了一项实现语义互操作临床数据格局的国家战略。

方法

一开始对各种解决互操作性的方法进行了深入分析,包括医疗保健领域的大型框架,如健康级别七(HL7)和整合医疗企业(IHE),以及几个领域,如监管机构(如临床数据交换标准协会[CDISC])和研究团体(如观察性医疗结果合作组织[OMOP]),以识别瓶颈并评估可持续性。基于这项研究,设计了一个由三个支柱组成的战略。它具有强大的多维度语义、用于交换的描述性形式语言,以及满足各个团体需求所需的尽可能多的数据模型。

结果

自2019年年中以来,该战略已在瑞士逐步实施,并已被所有大学医院和高级研究机构采用。该倡议由一个中央组织协调,即瑞士生物信息学研究所的SPHN数据协调中心(SIB)。语义由领域专家映射到各种现有标准上,如医学临床术语系统命名法(SNOMED CT)、逻辑观察标识符名称和代码(LOINC)以及国际疾病分类(ICD)。资源描述框架(RDF)用于存储和传输数据,并整合来自不同来源和标准的信息。基于SPARQL查询语言的数据转换器得以实现,以将RDF表示形式转换为研究团体所需的众多数据模型,或与其他系统(如电子病例报告表)进行对接。

结论

SPHN战略以务实且适用的方式成功实施了现有标准。它没有试图构建任何新的标准,而是以非教条的方式使用现有标准。现在它又获得了4年的资金支持,为瑞士的格局带来了新的维度,以支持个性化医疗领域的研究和大型可互操作临床数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2edb/8277320/08dd4b22b9f4/medinform_v9i6e27591_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验