Suppr超能文献

代谢重编程在急性肾损伤进展过程中肾小管上皮细胞中的作用。

The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury.

机构信息

Medicial Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

出版信息

Cell Mol Life Sci. 2021 Aug;78(15):5731-5741. doi: 10.1007/s00018-021-03892-w. Epub 2021 Jun 29.

Abstract

Acute kidney injury (AKI) is one of the most common clinical syndromes. AKI is associated with significant morbidity and subsequent chronic kidney disease (CKD) development. Thus, it is urgent to develop a strategy to hinder AKI progression. Renal tubules are responsible for the reabsorption and secretion of various solutes and the damage to this part of the nephron is a key mediator of AKI. As we know, many common renal insults primarily target the highly metabolically active proximal tubular cells (PTCs). PTCs are the most energy-demanding cells in the kidney. The ATP that they use is mostly produced in their mitochondria by fatty acid β-oxidation (FAO). But, when PTCs face various biological stresses, FAO will shut down for a time that outlives injury. Recent studies have suggested that surviving PTCs can adapt to FAO disruption by increasing glycolysis when facing metabolic constraints, although PTCs do not perform glycolysis in a normal physiological state. Enhanced glycolysis in a short period compensates for impaired energy production and exerts partial renal-protective effects, but its long-term effect on renal function and AKI progression is not promising. Deranged FAO and enhanced glycolysis may contribute to the AKI to CKD transition through different molecular biological mechanisms. In this review, we concentrate on the recent pathological findings of AKI with regards to the metabolic reprogramming in PTCs, confirming that targeting metabolic reprogramming represents a potentially effective therapeutic strategy for the progression of AKI.

摘要

急性肾损伤(AKI)是最常见的临床综合征之一。AKI 与显著的发病率和随后的慢性肾脏病(CKD)发展有关。因此,迫切需要制定一种策略来阻止 AKI 的进展。肾小管负责各种溶质的重吸收和分泌,而肾单位这部分的损伤是 AKI 的关键介导因素。众所周知,许多常见的肾损伤主要针对高度代谢活跃的近端肾小管细胞(PTCs)。PTCs 是肾脏中能量需求最高的细胞。它们使用的 ATP 主要由脂肪酸β氧化(FAO)在其线粒体中产生。但是,当 PTCs 面临各种生物应激时,FAO 会暂时关闭,而这种关闭会持续到损伤发生之后。最近的研究表明,当面临代谢限制时,存活的 PTCs 可以通过增加糖酵解来适应 FAO 中断,尽管 PTCs 在正常生理状态下不进行糖酵解。在短时间内增强糖酵解可以弥补能量产生的受损,并发挥部分肾脏保护作用,但它对肾功能和 AKI 进展的长期影响并不乐观。FAO 紊乱和糖酵解增强可能通过不同的分子生物学机制导致 AKI 向 CKD 转变。在这篇综述中,我们集中讨论了 AKI 中 PTCs 代谢重编程的最新病理发现,证实靶向代谢重编程代表了 AKI 进展的一种潜在有效治疗策略。

相似文献

1
The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury.
Cell Mol Life Sci. 2021 Aug;78(15):5731-5741. doi: 10.1007/s00018-021-03892-w. Epub 2021 Jun 29.
2
Increased Fatty Acid Oxidation in Differentiated Proximal Tubular Cells Surviving a Reversible Episode of Acute Kidney Injury.
Cell Physiol Biochem. 2018;47(4):1338-1351. doi: 10.1159/000490819. Epub 2018 Jun 19.
3
Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming.
Metabolism. 2022 Jun;131:155194. doi: 10.1016/j.metabol.2022.155194. Epub 2022 Mar 26.
4
Critical roles of tubular mitochondrial ATP synthase dysfunction in maleic acid-induced acute kidney injury.
Apoptosis. 2024 Jun;29(5-6):620-634. doi: 10.1007/s10495-023-01897-3. Epub 2024 Jan 28.
5
Mitochondrial dysfunction and the AKI-to-CKD transition.
Am J Physiol Renal Physiol. 2020 Dec 1;319(6):F1105-F1116. doi: 10.1152/ajprenal.00285.2020. Epub 2020 Oct 19.
6
depletion induces inflammation and apoptosis in injured renal proximal tubule epithelial cells.
Am J Physiol Renal Physiol. 2024 May 1;326(5):F827-F838. doi: 10.1152/ajprenal.00262.2023. Epub 2024 Mar 14.
7
Sirtuin 5 Regulates Proximal Tubule Fatty Acid Oxidation to Protect against AKI.
J Am Soc Nephrol. 2019 Dec;30(12):2384-2398. doi: 10.1681/ASN.2019020163. Epub 2019 Oct 1.
8
Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury.
Am J Physiol Renal Physiol. 2020 Aug 1;319(2):F229-F244. doi: 10.1152/ajprenal.00390.2019. Epub 2020 Jun 15.
9
Regulation of pericyte metabolic reprogramming restricts the AKI to CKD transition.
Metabolism. 2023 Aug;145:155592. doi: 10.1016/j.metabol.2023.155592. Epub 2023 May 23.
10
Mitochondrial Signaling, the Mechanisms of AKI-to-CKD Transition and Potential Treatment Targets.
Int J Mol Sci. 2024 Jan 26;25(3):1518. doi: 10.3390/ijms25031518.

引用本文的文献

2
Mitigating renal dysfunction in liver cirrhosis: Therapeutic role of ferrous sulphate, folic acid, and its co-administration.
Toxicol Rep. 2025 Apr 9;14:102026. doi: 10.1016/j.toxrep.2025.102026. eCollection 2025 Jun.
3
5
Obacunone inhibits ferroptosis through regulation of Nrf2 homeostasis to treat diabetic nephropathy.
Mol Med Rep. 2025 May;31(5). doi: 10.3892/mmr.2025.13500. Epub 2025 Mar 21.
8
Iron-Deficiency Anemia Elevates Risk of Diabetic Kidney Disease in Type 2 Diabetes Mellitus.
J Diabetes. 2025 Feb;17(2):e70060. doi: 10.1111/1753-0407.70060.
9
Vitexin enhances mitophagy and improves renal ischemia-reperfusion injury by regulating the p38/MAPK pathway.
Ren Fail. 2025 Dec;47(1):2463572. doi: 10.1080/0886022X.2025.2463572. Epub 2025 Feb 17.
10
ATGL regulates renal fibrosis by reprogramming lipid metabolism during the transition from AKI to CKD.
Mol Ther. 2025 Feb 5;33(2):805-822. doi: 10.1016/j.ymthe.2024.12.053. Epub 2025 Jan 2.

本文引用的文献

2
Renal gluconeogenesis in insulin resistance: A culprit for hyperglycemia in diabetes.
World J Diabetes. 2021 May 15;12(5):556-568. doi: 10.4239/wjd.v12.i5.556.
3
Acute kidney injury leading to CKD is associated with a persistence of metabolic dysfunction and hypertriglyceridemia.
iScience. 2021 Jan 9;24(2):102046. doi: 10.1016/j.isci.2021.102046. eCollection 2021 Feb 19.
4
Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection.
Nat Rev Nephrol. 2021 May;17(5):335-349. doi: 10.1038/s41581-021-00394-7. Epub 2021 Feb 5.
5
Gastrin, via activation of PPARα, protects the kidney against hypertensive injury.
Clin Sci (Lond). 2021 Jan 29;135(2):409-427. doi: 10.1042/CS20201340.
7
Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism.
Nephrol Dial Transplant. 2022 Jul 26;37(8):1417-1425. doi: 10.1093/ndt/gfaa302.
8
Fenofibrate attenuates ischemia reperfusion-induced acute kidney injury and associated liver dysfunction in rats.
Drug Dev Res. 2021 May;82(3):412-421. doi: 10.1002/ddr.21764. Epub 2020 Nov 23.
9
Lung Myofibroblasts Promote Macrophage Profibrotic Activity through Lactate-induced Histone Lactylation.
Am J Respir Cell Mol Biol. 2021 Jan;64(1):115-125. doi: 10.1165/rcmb.2020-0360OC.
10
Mitochondrial dysfunction and the AKI-to-CKD transition.
Am J Physiol Renal Physiol. 2020 Dec 1;319(6):F1105-F1116. doi: 10.1152/ajprenal.00285.2020. Epub 2020 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验