Suppr超能文献

通过螺旋-转角-螺旋模体对跨膜双层中的 Holin S105 进行计算模拟及其二聚化。

Computational Simulation of Holin S105 in Membrane Bilayer and Its Dimerization Through a Helix-Turn-Helix Motif.

机构信息

Edgemont Jr.\Sr. High School, 200 White Oak Ln, Scarsdale, NY, 10583, USA.

Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.

出版信息

J Membr Biol. 2021 Aug;254(4):397-407. doi: 10.1007/s00232-021-00187-w. Epub 2021 Jun 29.

Abstract

During the final step of the bacteriophage infection cycle, the cytoplasmic membrane of host cells is disrupted by small membrane proteins called holins. The function of holins in cell lysis is carried out by forming a highly ordered structure called lethal lesion, in which the accumulation of holins in the cytoplasmic membrane leads to the sudden opening of a hole in the middle of this oligomer. Previous studies showed that dimerization of holins is a necessary step to induce their higher order assembly. However, the molecular mechanism underlying the holin-mediated lesion formation is not well understood. In order to elucidate the functions of holin, we first computationally constructed a structural model for our testing system: the holin S105 from bacteriophage lambda. All atom molecular dynamic simulations were further applied to refine its structure and study its dynamics as well as interaction in lipid bilayer. Additional simulations on association between two holins provide supportive evidence to the argument that the C-terminal region of holin plays a critical role in regulating the dimerization. In detail, we found that the adhesion of specific nonpolar residues in transmembrane domain 3 (TMD3) in a polar environment serves as the driven force of dimerization. Our study therefore brings insights to the design of binding interfaces between holins, which can be potentially used to modulate the dynamics of lesion formation.

摘要

在噬菌体感染周期的最后一步中,宿主细胞的细胞质膜被称为孔蛋白的小膜蛋白破坏。孔蛋白在细胞裂解中的功能是通过形成一种称为致死性损伤的高度有序结构来实现的,在这种结构中,孔蛋白在细胞质膜中的积累导致在这个寡聚体的中间突然出现一个孔。先前的研究表明,孔蛋白的二聚化是诱导其高级组装的必要步骤。然而,孔蛋白介导的损伤形成的分子机制尚不清楚。为了阐明孔蛋白的功能,我们首先通过计算构建了我们的测试系统:噬菌体 lambda 的 S105 孔蛋白的结构模型。进一步应用全原子分子动力学模拟来细化其结构,并研究其在脂质双层中的动力学和相互作用。对两个孔蛋白之间的关联的附加模拟为以下论点提供了支持证据,即孔蛋白的 C 末端区域在调节二聚化方面起着关键作用。具体来说,我们发现跨膜域 3(TMD3)中特定非极性残基在极性环境中的粘附充当二聚化的驱动力。因此,我们的研究为孔蛋白之间结合界面的设计提供了新的见解,这可能有助于调节损伤形成的动力学。

相似文献

1
Computational Simulation of Holin S105 in Membrane Bilayer and Its Dimerization Through a Helix-Turn-Helix Motif.
J Membr Biol. 2021 Aug;254(4):397-407. doi: 10.1007/s00232-021-00187-w. Epub 2021 Jun 29.
2
Dimerization between the holin and holin inhibitor of phage lambda.
J Bacteriol. 2000 Nov;182(21):6075-81. doi: 10.1128/JB.182.21.6075-6081.2000.
3
Probing the structure of the S105 hole.
J Bacteriol. 2014 Nov;196(21):3683-9. doi: 10.1128/JB.01673-14. Epub 2014 Aug 4.
5
Functional analysis of heterologous holin proteins in a lambdaDeltaS genetic background.
FEMS Microbiol Lett. 2000 Mar 15;184(2):179-86. doi: 10.1111/j.1574-6968.2000.tb09011.x.
6
Decoding the molecular properties of mycobacteriophage D29 Holin provides insights into Holin engineering.
J Virol. 2021 Apr 26;95(10). doi: 10.1128/JVI.02173-20. Epub 2021 Feb 24.
7
The holin of bacteriophage lambda forms rings with large diameter.
Mol Microbiol. 2008 Aug;69(4):784-793. doi: 10.1111/j.1365-2958.2008.06298.x.
8
Spatial and temporal control of lysis by the lambda holin.
mBio. 2024 Feb 14;15(2):e0129023. doi: 10.1128/mbio.01290-23. Epub 2023 Dec 21.
9
A Cytoplasmic Antiholin Is Embedded In Frame with the Holin in a Lactobacillus fermentum Bacteriophage.
Appl Environ Microbiol. 2018 Mar 1;84(6). doi: 10.1128/AEM.02518-17. Print 2018 Mar 15.
10
Functional analysis of a class I holin, P2 Y.
J Bacteriol. 2013 Mar;195(6):1346-55. doi: 10.1128/JB.01986-12. Epub 2013 Jan 18.

引用本文的文献

1
Role of hypothetical protein PA1-LRP in antibacterial activity of endolysin from a new phage PA1.
Front Microbiol. 2024 Oct 23;15:1463192. doi: 10.3389/fmicb.2024.1463192. eCollection 2024.
2
Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review.
BMC Infect Dis. 2022 Dec 22;22(1):957. doi: 10.1186/s12879-022-07944-9.

本文引用的文献

1
Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S Using DEER Spectroscopy.
J Phys Chem B. 2020 Dec 17;124(50):11396-11405. doi: 10.1021/acs.jpcb.0c09081. Epub 2020 Dec 8.
4
A computational model for understanding the oligomerization mechanisms of TNF receptor superfamily.
Comput Struct Biotechnol J. 2020 Jan 18;18:258-270. doi: 10.1016/j.csbj.2019.12.016. eCollection 2020.
5
Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission.
Front Cell Dev Biol. 2019 Dec 10;7:291. doi: 10.3389/fcell.2019.00291. eCollection 2019.
6
Multiscale simulation unravel the kinetic mechanisms of inflammasome assembly.
Biochim Biophys Acta Mol Cell Res. 2020 Feb;1867(2):118612. doi: 10.1016/j.bbamcr.2019.118612. Epub 2019 Nov 21.
7
Computational simulations of TNF receptor oligomerization on plasma membrane.
Proteins. 2020 May;88(5):698-709. doi: 10.1002/prot.25854. Epub 2019 Nov 18.
8
Bacteriophages as Alternatives to Antibiotics in Clinical Care.
Antibiotics (Basel). 2019 Sep 4;8(3):138. doi: 10.3390/antibiotics8030138.
9
The PSIPRED Protein Analysis Workbench: 20 years on.
Nucleic Acids Res. 2019 Jul 2;47(W1):W402-W407. doi: 10.1093/nar/gkz297.
10
Phage therapy: Current status and perspectives.
Med Res Rev. 2020 Jan;40(1):459-463. doi: 10.1002/med.21593. Epub 2019 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验