Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
J Mol Biol. 2021 Sep 3;433(18):167145. doi: 10.1016/j.jmb.2021.167145. Epub 2021 Jul 3.
Transport Protein Particle complexes (TRAPP) are evolutionarily conserved regulators of membrane trafficking, with this mediated by their guanine nucleotide exchange factor (GEF) activity towards Rab GTPases. In metazoans evidence suggests that two different TRAPP complexes exist, TRAPPII and TRAPPIII. These two complexes share a common core of subunits, with complex specific subunits (TRAPPC9 and TRAPPC10 in TRAPPII and TRAPPC8, TRAPPC11, TRAPPC12, TRAPPC13 in TRAPPIII). TRAPPII and TRAPPIII have distinct specificity for GEF activity towards Rabs, with TRAPPIII acting on Rab1, and TRAPPII acting on Rab1 and Rab11. The molecular basis for how these complex specific subunits alter GEF activity towards Rab GTPases is unknown. Here we have used a combination of biochemical assays, hydrogen deuterium exchange mass spectrometry (HDX-MS) and electron microscopy to examine the regulation of TRAPPII and TRAPPIIII complexes in solution and on membranes. GEF assays revealed that TRAPPIII has GEF activity against Rab1 and Rab43, with no detectable activity against the other 18 Rabs tested. The TRAPPIII complex had significant differences in protein dynamics at the Rab binding site compared to TRAPPII, potentially indicating an important role of accessory subunits in altering the active site of TRAPP complexes. Both the TRAPPII and TRAPPIII complexes had enhanced GEF activity on lipid membranes, with HDX-MS revealing numerous conformational changes that accompany membrane association. HDX-MS also identified a membrane binding site in TRAPPC8. Collectively, our results provide insight into the functions of TRAPP complexes and how they can achieve Rab specificity.
转运蛋白颗粒复合物(TRAPP)是进化上保守的膜运输调节剂,通过其对 Rab GTPases 的鸟嘌呤核苷酸交换因子(GEF)活性进行调节。在后生动物中,有证据表明存在两种不同的 TRAPP 复合物,TRAPPII 和 TRAPPIII。这两个复合物具有共同的核心亚基,而特定于复合物的亚基(TRAPPC9 和 TRAPPC10 在 TRAPPII 中,TRAPPC8、TRAPPC11、TRAPPC12、TRAPPC13 在 TRAPPIII 中)。TRAPPII 和 TRAPPIII 对 GEF 活性具有不同的特异性,TRAPPIII 作用于 Rab1,TRAPPII 作用于 Rab1 和 Rab11。这些特定于复合物的亚基如何改变 Rab GTPases 的 GEF 活性的分子基础尚不清楚。在这里,我们使用了生化测定、氢氘交换质谱(HDX-MS)和电子显微镜的组合来研究 TRAPPII 和 TRAPPIII 复合物在溶液中和膜上的调节。GEF 测定显示,TRAPPIII 对 Rab1 和 Rab43 具有 GEF 活性,而对其他 18 个测试的 Rab 没有可检测到的活性。与 TRAPPII 相比,TRAPPIII 复合物在 Rab 结合位点的蛋白动力学有显著差异,这可能表明辅助亚基在改变 TRAPP 复合物的活性位点方面起着重要作用。TRAPPII 和 TRAPPIII 复合物在脂质膜上均具有增强的 GEF 活性,HDX-MS 揭示了伴随膜结合的许多构象变化。HDX-MS 还鉴定了 TRAPPC8 中的一个膜结合位点。总的来说,我们的结果提供了对 TRAPP 复合物功能的深入了解,以及它们如何实现 Rab 特异性。