Suppr超能文献

肝细胞癌基因表达谱的全局分析及诊断/预后生物标志物的鉴定。

Global analysis of gene expression signature and diagnostic/prognostic biomarker identification of hepatocellular carcinoma.

机构信息

Department of Basic Medicine, School of Medicine, Xi'an International University, Xi'an, China.

School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China.

出版信息

Sci Prog. 2021 Jul-Sep;104(3):368504211029429. doi: 10.1177/00368504211029429.

Abstract

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. The landscape of HCC's molecular alteration signature has been explored over the last few decades. Even so, more comprehensive research is still needed to improve understanding of tumorigenesis and progression of HCC, as well as to identify potential biomarkers for the malignancy. In this research, a comprehensive bioinformatics analysis was conducted based on the publicly available databases from both the Cancer Genome Atlas (TCGA) program and the gene expression omnibus (GEO) database. R/Bioconductor was used to analyze differentially expressed genes (DEGs) between HCC tumor and normal control (NC) samples, and then a protein-protein interaction (PPI) network of DEGs was established through the STRING platform. Finally, the application of specific candidate genes as diagnostic or prognostic biomarkers of HCC was explored and evaluated by ROC and survival analysis. A total of 310 DEGs were detected in the HCC tumor samples. Thirty-six hub DEGs in the PPI network and 10 candidates of the 36 genes showed significant alterations in tumor expression, including CDKN3, TOP2A, UBE2C, CDC20, PBK, ASPM, KIF20A, NCAPG, CCNB2, CYP3A4. The 10-gene signature had relatively significant effects when distinguishing tumors from normal samples (sensitivity >70%, specificity >70%, AUC >0.8, <0.001). Eight candidate genes were negatively correlated with the overall survival rate of the patients (<0.05) and were all up-regulated in HCC tumor samples. The age and gender factors had no significant impact on the overall survival rate of HCC patients (>0.05), and the TNM stage status factor had a significant negative prognosis correlation (<0.05). This research provides evidence for a better understanding of tumorigenesis and progression of HCC and helps to explore candidate targets for disease diagnosis and treatment.

摘要

肝细胞癌(HCC)是世界上最常见的癌症之一。在过去的几十年中,人们已经探索了 HCC 分子改变特征的全貌。即便如此,仍需要更全面的研究来提高对 HCC 肿瘤发生和进展的理解,并确定恶性肿瘤的潜在生物标志物。在这项研究中,基于癌症基因组图谱(TCGA)计划和基因表达综合数据库(GEO)数据库中的公开数据库,进行了全面的生物信息学分析。使用 R/Bioconductor 分析 HCC 肿瘤与正常对照(NC)样本之间的差异表达基因(DEG),然后通过 STRING 平台建立 DEG 的蛋白质-蛋白质相互作用(PPI)网络。最后,通过 ROC 和生存分析探讨并评估特定候选基因作为 HCC 诊断或预后生物标志物的应用。在 HCC 肿瘤样本中检测到 310 个 DEG。在 PPI 网络中发现 36 个关键 DEG,在 36 个基因中有 10 个候选基因的肿瘤表达发生了显著改变,包括 CDKN3、TOP2A、UBE2C、CDC20、PBK、ASPM、KIF20A、NCAPG、CCNB2、CYP3A4。当区分肿瘤与正常样本时,10 基因特征具有相对显著的效果(敏感性>70%,特异性>70%,AUC>0.8,<0.001)。8 个候选基因与患者的总生存率呈负相关(<0.05),且均在 HCC 肿瘤样本中上调。年龄和性别因素对 HCC 患者的总生存率没有显著影响(>0.05),而 TNM 分期状态因素具有显著的负预后相关性(<0.05)。这项研究为更好地理解 HCC 的肿瘤发生和进展提供了证据,并有助于探索疾病诊断和治疗的候选靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baf2/10450782/b97315fa3d00/10.1177_00368504211029429-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验