Suppr超能文献

基于分子动力学模拟对内在无序蛋白质结合的见解

Insights into the Binding of Intrinsically Disordered Proteins from Molecular Dynamics Simulation.

作者信息

Baker Christopher M, Best Robert B

机构信息

University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.

出版信息

Wiley Interdiscip Rev Comput Mol Sci. 2014 May-Jun;4(3):182-198. doi: 10.1002/wcms.1167. Epub 2013 Aug 27.

Abstract

Intrinsically disordered proteins (IDPs) are a class of protein that, in the native state, possess no well-defined secondary or tertiary structure, existing instead as dynamic ensembles of conformations. They are biologically important, with approximately 20% of all eukaryotic proteins disordered, and found at the heart of many biochemical networks. To fulfil their biological roles, many IDPs need to bind to proteins and/or nucleic acids. And while unstructured in solution, IDPs typically fold into a well-defined three-dimensional structure upon interaction with a binding partner. The flexibility and structural diversity inherent to IDPs makes this coupled folding and binding difficult to study at atomic resolution by experiment alone, and computer simulation currently offers perhaps the best opportunity to understand this process. But simulation of coupled folding and binding is itself extremely challenging; these molecules are large and highly flexible, and their binding partners, such as DNA or cyclins, are also often large. Therefore, their study requires either or both simplified representations and advanced enhanced sampling schemes. It is not always clear that existing simulation techniques, optimized for studying folded proteins, are well-suited to IDPs. In this article, we examine the progress that has been made in the study of coupled folding and binding using molecular dynamics simulation. We summarise what has been learnt, and examine the state of the art in terms of both methodologies and models. We also consider the lessons to be learnt from advances in other areas of simulation and highlight the issues that remain of be addressed.

摘要

内在无序蛋白质(IDP)是一类在天然状态下不具有明确二级或三级结构的蛋白质,而是以动态构象集合的形式存在。它们具有重要的生物学意义,所有真核蛋白质中约有20%是无序的,并存在于许多生化网络的核心部位。为了发挥其生物学作用,许多IDP需要与蛋白质和/或核酸结合。虽然IDP在溶液中是无结构的,但它们通常在与结合伴侣相互作用时折叠成明确的三维结构。IDP固有的灵活性和结构多样性使得仅通过实验在原子分辨率下研究这种耦合折叠和结合变得困难,而计算机模拟目前可能提供了理解这一过程的最佳机会。但是耦合折叠和结合的模拟本身极具挑战性;这些分子很大且高度灵活,它们的结合伴侣,如DNA或细胞周期蛋白,通常也很大。因此,对它们的研究需要简化表示法和先进的增强采样方案中的一种或两种。对于研究折叠蛋白质进行了优化的现有模拟技术是否适用于IDP并不总是明确的。在本文中,我们研究了使用分子动力学模拟在耦合折叠和结合研究方面取得的进展。我们总结了已学到的知识,并从方法和模型两方面审视了当前的技术水平。我们还考虑了从模拟其他领域的进展中可以吸取的教训,并强调了仍有待解决的问题。

相似文献

1
Insights into the Binding of Intrinsically Disordered Proteins from Molecular Dynamics Simulation.
Wiley Interdiscip Rev Comput Mol Sci. 2014 May-Jun;4(3):182-198. doi: 10.1002/wcms.1167. Epub 2013 Aug 27.
3
Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins.
Phys Chem Chem Phys. 2021 Jan 21;23(2):777-784. doi: 10.1039/d0cp05818a.
4
Mechanism of Coupled Folding-upon-Binding of an Intrinsically Disordered Protein.
J Am Chem Soc. 2020 Jun 24;142(25):11092-11101. doi: 10.1021/jacs.0c03217. Epub 2020 Jun 16.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Probing the dynamics of disorder.
Prog Biophys Mol Biol. 2017 Sep;128:57-62. doi: 10.1016/j.pbiomolbio.2017.05.008. Epub 2017 May 26.
7
Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding.
Protein Sci. 2019 Nov;28(11):1952-1965. doi: 10.1002/pro.3718. Epub 2019 Sep 4.
8
Hierarchical Ensembles of Intrinsically Disordered Proteins at Atomic Resolution in Molecular Dynamics Simulations.
J Chem Theory Comput. 2020 Jan 14;16(1):725-737. doi: 10.1021/acs.jctc.9b00809. Epub 2019 Dec 26.

引用本文的文献

1
Unveiling the Mechanisms of EGCG-p53 Interactions through Molecular Dynamics Simulations.
ACS Omega. 2024 Apr 23;9(18):20066-20085. doi: 10.1021/acsomega.3c10523. eCollection 2024 May 7.
7
The Energy Landscape Perspective: Encoding Structure and Function for Biomolecules.
Front Mol Biosci. 2022 Jan 27;9:820792. doi: 10.3389/fmolb.2022.820792. eCollection 2022.
8
How to assess the structural dynamics of transcription factors by integrating sparse NMR and EPR constraints with molecular dynamics simulations.
Comput Struct Biotechnol J. 2021 Apr 21;19:2097-2105. doi: 10.1016/j.csbj.2021.04.020. eCollection 2021.
9
Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins.
Methods. 2021 Sep;193:116-135. doi: 10.1016/j.ymeth.2021.03.018. Epub 2021 Apr 6.
10
Structural Proteomics Methods to Interrogate the Conformations and Dynamics of Intrinsically Disordered Proteins.
Front Chem. 2021 Mar 11;9:603639. doi: 10.3389/fchem.2021.603639. eCollection 2021.

本文引用的文献

1
Modeling Aromatic Liquids:  Toluene, Phenol, and Pyridine.
J Chem Theory Comput. 2007 Mar;3(2):530-48. doi: 10.1021/ct600218f.
2
The Structure of Liquid Benzene.
J Chem Theory Comput. 2006 Jul;2(4):947-55. doi: 10.1021/ct060024h.
3
Mechanism of Coupled Folding and Binding in the siRNA-PAZ Complex.
J Chem Theory Comput. 2008 Aug;4(8):1360-8. doi: 10.1021/ct800030s.
5
Matching of additive and polarizable force fields for multiscale condensed phase simulations.
J Chem Theory Comput. 2013 Jun 11;9(6):2826-2837. doi: 10.1021/ct400116g.
7
Describing intrinsically disordered proteins at atomic resolution by NMR.
Curr Opin Struct Biol. 2013 Jun;23(3):426-35. doi: 10.1016/j.sbi.2013.02.007. Epub 2013 Mar 29.
8
A folded excited state of ligand-free nuclear coactivator binding domain (NCBD) underlies plasticity in ligand recognition.
Biochemistry. 2013 Mar 12;52(10):1686-93. doi: 10.1021/bi4001062. Epub 2013 Mar 1.
10
Single-molecule spectroscopy of protein folding dynamics--expanding scope and timescales.
Curr Opin Struct Biol. 2013 Feb;23(1):36-47. doi: 10.1016/j.sbi.2012.10.008. Epub 2013 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验