Suppr超能文献

技术说明:关于开发一种基于结果的频率滤波器,以改善基于放射组学的人乳头瘤病毒(HPV)在口咽鳞状细胞癌患者中的建模。

Technical note: On the development of an outcome-driven frequency filter for improving radiomics-based modeling of human papillomavirus (HPV) in patients with oropharyngeal squamous cell carcinoma.

机构信息

Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan, USA.

Department of Public Health, Henry Ford Cancer Institute, Detroit, Michigan, USA.

出版信息

Med Phys. 2021 Nov;48(11):7552-7562. doi: 10.1002/mp.15159. Epub 2021 Sep 16.

Abstract

PURPOSE

To implement an outcome-driven frequency filter for improving radiomics-based modeling of human papillomavirus (HPV) for patients with oropharyngeal squamous cell carcinoma (OPSCC).

METHODS AND MATERIALS

One hundred twenty-eight OPSCC patients with known HPV status (60-HPV+ and 68-HPV-, confirmed by immunohistochemistry-P16 protein testing) were retrospectively studied. A 3D Discrete Fourier Transform was applied on contrast-enhanced computed tomography (CE-CT) images of patient gross tumor volumes (GTVs) to transform intensity distributions to the frequency domain and estimate frequency power spectrums of HPV- and HPV+ patient cohorts. Statistical analyses were performed to rank frequency bands contributing toward the prediction of HPV status. An outcome-driven frequency filter was designed accordingly and applied to GTV frequency information. A 3D inverse discrete Fourier transform was applied to reconstruct HPV-related frequency-filtered images. Radiomics features (11 feature-categories) were extracted from pre- and post-frequency filtered images using our previously published "ROdiomiX" software. Least-absolute-shrinkage-and-selection-operation (Lasso) combined with a generalized linear model (Lasso-GLM) was developed to identify and rank feature subsets with the optimal information for prediction of HPV+/-. Radiomics-based Lasso-GLM classifiers (pre- and post-frequency filtered) were constructed and validated using random permutation sampling and nested cross-validation (CV) techniques. Average area under the receiver operating characteristic (AUC), and positive and negative predictive values (PPV and NPV) were computed to estimate generalization error and prediction performance.

RESULTS

Among 192 radiomic features, 15 features were found to be statistically significant discriminators between HPV+/- cohorts on post-frequency filtered CE-CT images. Fourteen such radiomic features were observed on pre-frequency filtered datasets. Discriminant features included tumor morphology and intensity contrast. Performances for prediction of HPV for the pre- and post-frequency filtered Lasso-GLM classifiers were as follows: AUC/PPV/NPV = 0.789/0.755/0.805 and 0.850/0.808/0.877, respectively. Nested CV performances for prediction of HPV for the pre- and post-frequency filtered Lasso-GLM classifiers were as follows: AUC/PPV/NPV = 0.814/0.725/0.877 and 0.890/0.820/0.911, respectively.

CONCLUSION

Albeit subject to confirmation in a larger cohort, this pilot study presents encouraging results on the importance of frequency analysis prior to radiomic feature extraction toward enhancement of model performance for characterizing HPV in patients with OPSCC.

摘要

目的

为了改进 HPV 阳性和 HPV 阴性口咽鳞癌患者的放射组学模型,我们开发了一种基于结果的频率滤波器。

方法和材料

回顾性分析了 128 例已知 HPV 状态的口咽鳞癌患者(60-HPV+ 和 68-HPV-,通过免疫组化 P16 蛋白检测证实)。对患者的大体肿瘤体积(GTV)的增强 CT 图像进行三维离散傅里叶变换,将强度分布转换到频域,并估计 HPV+ 和 HPV-患者队列的频率功率谱。进行统计学分析以确定有助于 HPV 状态预测的频率带。据此设计了一个基于结果的频率滤波器,并应用于 GTV 频率信息。应用三维逆离散傅里叶变换从原始和经频率滤波的图像中重建与 HPV 相关的频率滤波图像。使用我们之前发表的“ROdiomiX”软件,从预处理和后处理频率滤波图像中提取放射组学特征(11 个特征类别)。使用最小绝对收缩和选择算子(Lasso)和广义线性模型(Lasso-GLM)来识别和排名具有 HPV+/ -预测最佳信息的特征子集。使用随机排列抽样和嵌套交叉验证(CV)技术构建和验证基于放射组学的 Lasso-GLM 分类器(预处理和后处理频率滤波)。计算平均受试者工作特征(ROC)曲线下面积(AUC)以及阳性和阴性预测值(PPV 和 NPV),以估计泛化误差和预测性能。

结果

在 192 个放射组学特征中,有 15 个特征在后处理的 CE-CT 图像上被发现是 HPV+/-队列之间的统计学显著区分者。在预处理数据集上观察到 14 个这样的放射组学特征。有判别力的特征包括肿瘤形态和强度对比。预处理和后处理频率滤波 Lasso-GLM 分类器预测 HPV 的性能如下:AUC/PPV/NPV=0.789/0.755/0.805 和 0.850/0.808/0.877。预处理和后处理频率滤波 Lasso-GLM 分类器预测 HPV 的嵌套 CV 性能如下:AUC/PPV/NPV=0.814/0.725/0.877 和 0.890/0.820/0.911。

结论

尽管在更大的队列中需要进一步证实,但这项初步研究的结果令人鼓舞,它证明了在提取放射组学特征之前进行频率分析对口咽鳞癌患者 HPV 特征描述模型性能的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验