Suppr超能文献

真核翻译终止中确保速度和保真度的机制。

Mechanisms that ensure speed and fidelity in eukaryotic translation termination.

机构信息

Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.

Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Science. 2021 Aug 20;373(6557):876-882. doi: 10.1126/science.abi7801.

Abstract

Translation termination, which liberates a nascent polypeptide from the ribosome specifically at stop codons, must occur accurately and rapidly. We established single-molecule fluorescence assays to track the dynamics of ribosomes and two requisite release factors (eRF1 and eRF3) throughout termination using an in vitro-reconstituted yeast translation system. We found that the two eukaryotic release factors bound together to recognize stop codons rapidly and elicit termination through a tightly regulated, multistep process that resembles transfer RNA selection during translation elongation. Because the release factors are conserved from yeast to humans, the molecular events that underlie yeast translation termination are likely broadly fundamental to eukaryotic protein synthesis.

摘要

翻译终止是指核糖体在终止密码子处特异性地释放新生多肽,这个过程必须准确而迅速。我们使用体外重建的酵母翻译系统,建立了单分子荧光检测方法,来跟踪核糖体和两种必需的释放因子(eRF1 和 eRF3)在终止过程中的动态。我们发现,两种真核释放因子结合在一起,可以快速识别终止密码子,并通过一个紧密调控的多步过程引发终止,这个过程类似于翻译延伸过程中 tRNA 的选择。由于释放因子在从酵母到人等生物中都保守,因此,酵母翻译终止所依赖的分子事件很可能是真核蛋白质合成的基础。

相似文献

1
Mechanisms that ensure speed and fidelity in eukaryotic translation termination.
Science. 2021 Aug 20;373(6557):876-882. doi: 10.1126/science.abi7801.
2
Ribosome-bound Pub1 modulates stop codon decoding during translation termination in yeast.
FEBS J. 2017 Jun;284(12):1914-1930. doi: 10.1111/febs.14099. Epub 2017 May 29.
3
GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination.
Mol Cell Biol. 2004 Sep;24(17):7769-78. doi: 10.1128/MCB.24.17.7769-7778.2004.
4
Eukaryotic release factor 3 is required for multiple turnovers of peptide release catalysis by eukaryotic release factor 1.
J Biol Chem. 2013 Oct 11;288(41):29530-8. doi: 10.1074/jbc.M113.487090. Epub 2013 Aug 20.
6
Translation termination: new factors and insights.
RNA Biol. 2010 Sep-Oct;7(5):548-50. doi: 10.4161/rna.7.5.12686. Epub 2010 Sep 1.
7
Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae.
Mol Cell Biol. 2014 Nov;34(21):4062-76. doi: 10.1128/MCB.00799-14. Epub 2014 Aug 25.
9
Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3.
Nucleic Acids Res. 2019 May 21;47(9):4798-4813. doi: 10.1093/nar/gkz177.

引用本文的文献

1
Choreography of human mitochondrial leaderless mRNA translation initiation.
bioRxiv. 2025 Jul 10:2025.07.10.662049. doi: 10.1101/2025.07.10.662049.
2
Uniquome: Construction and decoding of a novel proteomic atlas that contains new peptide entities.
Comput Struct Biotechnol J. 2025 May 21;27:2123-2138. doi: 10.1016/j.csbj.2025.05.027. eCollection 2025.
6
Assay for ribosome stimulation of angiogenin nuclease activity.
Methods Enzymol. 2025;711:381-404. doi: 10.1016/bs.mie.2024.11.007. Epub 2024 Dec 4.
7
Principles, challenges, and advances in ribosome profiling: from bulk to low-input and single-cell analysis.
Adv Biotechnol (Singap). 2023 Dec 1;1(4):6. doi: 10.1007/s44307-023-00006-4.
8
9
Exploring the dynamics of messenger ribonucleoprotein-mediated translation repression.
Biochem Soc Trans. 2024 Dec 19;52(6):2267-2279. doi: 10.1042/BST20231240.
10
Functional Activity of Isoform 2 of Human eRF1.
Int J Mol Sci. 2024 Jul 22;25(14):7997. doi: 10.3390/ijms25147997.

本文引用的文献

1
2
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
3
Termi-Luc: a versatile assay to monitor full-protein release from ribosomes.
RNA. 2020 Dec;26(12):2044-2050. doi: 10.1261/rna.076588.120. Epub 2020 Aug 14.
4
Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading.
Nature. 2020 Aug;584(7822):640-645. doi: 10.1038/s41586-020-2447-x. Epub 2020 Jul 1.
6
Molecular mechanism of translational stalling by inhibitory codon combinations and poly(A) tracts.
EMBO J. 2020 Feb 3;39(3):e103365. doi: 10.15252/embj.2019103365. Epub 2019 Dec 20.
7
eIF5B gates the transition from translation initiation to elongation.
Nature. 2019 Sep;573(7775):605-608. doi: 10.1038/s41586-019-1561-0. Epub 2019 Sep 18.
8
RACK1 on and off the ribosome.
RNA. 2019 Jul;25(7):881-895. doi: 10.1261/rna.071217.119. Epub 2019 Apr 25.
9
High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress.
Mol Cell. 2019 Mar 7;73(5):959-970.e5. doi: 10.1016/j.molcel.2018.12.009. Epub 2019 Jan 24.
10
tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis.
Cell Rep. 2018 Dec 4;25(10):2676-2688.e7. doi: 10.1016/j.celrep.2018.11.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验