Topçuoğlu Begüm D, Lapp Zena, Sovacool Kelly L, Snitkin Evan, Wiens Jenna, Schloss Patrick D
Department of Microbiology & Immunology, University of Michigan.
Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA.
J Open Source Softw. 2021;6(61). doi: 10.21105/joss.03073. Epub 2021 May 14.
Machine learning (ML) for classification and prediction based on a set of features is used to make decisions in healthcare, economics, criminal justice and more. However, implementing an ML pipeline including preprocessing, model selection, and evaluation can be time-consuming, confusing, and difficult. Here, we present mikropml (prononced "meek-ROPE em el"), an easy-to-use R package that implements ML pipelines using regression, support vector machines, decision trees, random forest, or gradient-boosted trees. The package is available on GitHub, CRAN, and conda.
基于一组特征进行分类和预测的机器学习(ML)被用于医疗保健、经济学、刑事司法等领域来做出决策。然而,实施一个包括预处理、模型选择和评估的ML流程可能既耗时、令人困惑又困难。在此,我们展示了mikropml(发音为“meek-ROPE em el”),这是一个易于使用的R包,它使用回归、支持向量机、决策树、随机森林或梯度提升树来实现ML流程。该包可在GitHub、CRAN和conda上获取。