College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
Sci Total Environ. 2021 Dec 15;800:149668. doi: 10.1016/j.scitotenv.2021.149668. Epub 2021 Aug 14.
Boron pollution in the aquatic environment has a hazardous effect on human health and the ecosystem as a metalloid pollutant, and few researchers have focused on the potential interaction between boron and microplastics. We investigated the adsorption of boron on four types of microplastics (polyvinyl chloride (PVC), aged PVC, polystyrene (PS), and aged PS). The adsorption behavior was explored by kinetics, isotherm models, and several aqueous factors, including pH, humic acid, ionic strength (Na), metal ion types (Mg, Ca, Cu, and Al), and the seawater environment. The adsorption capacities on microplastics were followed: aged PVC (0.91 mg/g) > aged PS (0.197 mg/g) > virgin PVC (0.1 mg/g) > virgin PS (0.005 mg/g). The adsorption kinetics and isotherm models suggested monolayer adsorption and chemisorption. Humic acid and high pH significantly inhibited the adsorption due to the complexation and hydrolysis of boric acid (B(OH)), respectively. The presence of metal ions may enhance or hinder adsorption, depending on the boron species, ion concentration, ion type, and microplastics categories. The unique interaction mainly depended on surface complexations of B(OH) with oxygen-containing groups on microplastics surface. Because aged microplastics have more oxygen-containing groups, they can combine more B(OH), and PVC can adsorb more boron due to the CCl bond and surface diffusion. In the aquatic environment, however, metal ions may occupy these binding sites, and the electrostatic force between borate ([B(OH)]) and microplastics will take precedence. In the simulated intestines of warm-blooded animals, we achieved the greatest boron desorption ratio on microplastics. This work explored the adsorption characteristics of boron by microplastics and revealed potential environmental risks of metalloid enrichment.
硼作为一种类金属污染物,对水生环境和生态系统具有有害影响,而很少有研究关注硼与微塑料之间的潜在相互作用。我们研究了硼在四种类型的微塑料(聚氯乙烯(PVC)、老化 PVC、聚苯乙烯(PS)和老化 PS)上的吸附。通过动力学、等温线模型以及包括 pH 值、腐殖酸、离子强度(Na)、金属离子类型(Mg、Ca、Cu 和 Al)和海水环境在内的几种水相因素来探索吸附行为。微塑料上的吸附容量依次为:老化 PVC(0.91mg/g)>老化 PS(0.197mg/g)>原生 PVC(0.1mg/g)>原生 PS(0.005mg/g)。吸附动力学和等温线模型表明为单层吸附和化学吸附。腐殖酸和高 pH 值由于硼酸(B(OH))的络合和水解,显著抑制了吸附。金属离子的存在可能会增强或阻碍吸附,这取决于硼的种类、离子浓度、离子类型和微塑料种类。这种独特的相互作用主要取决于 B(OH)与微塑料表面含氧基团之间的表面络合。由于老化的微塑料具有更多的含氧基团,它们可以结合更多的 B(OH),而 PVC 可以由于 CCl 键和表面扩散而吸附更多的硼。然而,在水相环境中,金属离子可能会占据这些结合位点,并且硼酸盐([B(OH)])和微塑料之间的静电力将占主导地位。在温血动物的模拟肠道中,我们在微塑料上实现了最大的硼解吸比。这项工作探索了硼通过微塑料的吸附特征,并揭示了类金属富集会带来潜在的环境风险。