Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA.
MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.
Nat Struct Mol Biol. 2021 Sep;28(9):747-754. doi: 10.1038/s41594-021-00653-y. Epub 2021 Aug 23.
Drug discovery campaigns against COVID-19 are beginning to target the SARS-CoV-2 RNA genome. The highly conserved frameshift stimulation element (FSE), required for balanced expression of viral proteins, is a particularly attractive SARS-CoV-2 RNA target. Here we present a 6.9 Å resolution cryo-EM structure of the FSE (88 nucleotides, ~28 kDa), validated through an RNA nanostructure tagging method. The tertiary structure presents a topologically complex fold in which the 5' end is threaded through a ring formed inside a three-stem pseudoknot. Guided by this structure, we develop antisense oligonucleotides that impair FSE function in frameshifting assays and knock down SARS-CoV-2 virus replication in A549-ACE2 cells at 100 nM concentration.
针对 COVID-19 的药物发现工作已经开始针对 SARS-CoV-2 RNA 基因组。对于病毒蛋白平衡表达至关重要的高度保守的移码刺激元件(FSE)是 SARS-CoV-2 RNA 的一个特别有吸引力的靶标。在这里,我们通过 RNA 纳米结构标记方法验证了 FSE(88 个核苷酸,~28 kDa)的 6.9 Å 分辨率冷冻电镜结构。该三级结构呈现出一种拓扑结构复杂的折叠,其中 5'端穿过由三茎假结内部形成的环。受此结构的指导,我们开发了反义寡核苷酸,这些寡核苷酸在移码测定中损害 FSE 功能,并在 100 nM 浓度下敲低 A549-ACE2 细胞中的 SARS-CoV-2 病毒复制。