Suppr超能文献

冷冻电镜和反义技术靶向 SARS-CoV-2 RNA 基因组的 28kDa 移码刺激元件。

Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome.

机构信息

Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA.

MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.

出版信息

Nat Struct Mol Biol. 2021 Sep;28(9):747-754. doi: 10.1038/s41594-021-00653-y. Epub 2021 Aug 23.

Abstract

Drug discovery campaigns against COVID-19 are beginning to target the SARS-CoV-2 RNA genome. The highly conserved frameshift stimulation element (FSE), required for balanced expression of viral proteins, is a particularly attractive SARS-CoV-2 RNA target. Here we present a 6.9 Å resolution cryo-EM structure of the FSE (88 nucleotides, ~28 kDa), validated through an RNA nanostructure tagging method. The tertiary structure presents a topologically complex fold in which the 5' end is threaded through a ring formed inside a three-stem pseudoknot. Guided by this structure, we develop antisense oligonucleotides that impair FSE function in frameshifting assays and knock down SARS-CoV-2 virus replication in A549-ACE2 cells at 100 nM concentration.

摘要

针对 COVID-19 的药物发现工作已经开始针对 SARS-CoV-2 RNA 基因组。对于病毒蛋白平衡表达至关重要的高度保守的移码刺激元件(FSE)是 SARS-CoV-2 RNA 的一个特别有吸引力的靶标。在这里,我们通过 RNA 纳米结构标记方法验证了 FSE(88 个核苷酸,~28 kDa)的 6.9 Å 分辨率冷冻电镜结构。该三级结构呈现出一种拓扑结构复杂的折叠,其中 5'端穿过由三茎假结内部形成的环。受此结构的指导,我们开发了反义寡核苷酸,这些寡核苷酸在移码测定中损害 FSE 功能,并在 100 nM 浓度下敲低 A549-ACE2 细胞中的 SARS-CoV-2 病毒复制。

相似文献

1
Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome.
Nat Struct Mol Biol. 2021 Sep;28(9):747-754. doi: 10.1038/s41594-021-00653-y. Epub 2021 Aug 23.
3
Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs.
Nucleic Acids Res. 2021 Dec 2;49(21):12502-12516. doi: 10.1093/nar/gkab1096.
4
Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop.
Biochemistry. 2024 May 21;63(10):1287-1296. doi: 10.1021/acs.biochem.3c00716. Epub 2024 May 10.
5
De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures.
Nucleic Acids Res. 2021 Apr 6;49(6):3092-3108. doi: 10.1093/nar/gkab119.
6
Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function.
Nucleic Acids Res. 2023 Jan 25;51(2):728-743. doi: 10.1093/nar/gkac1184.
7
In vivo structure and dynamics of the SARS-CoV-2 RNA genome.
Nat Commun. 2021 Sep 28;12(1):5695. doi: 10.1038/s41467-021-25999-1.
8
Anti-SARS-CoV-2 gapmer antisense oligonucleotides targeting the main protease region of viral RNA.
Antiviral Res. 2024 Oct;230:105992. doi: 10.1016/j.antiviral.2024.105992. Epub 2024 Aug 23.
9
Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting.
Proc Natl Acad Sci U S A. 2021 Jun 29;118(26). doi: 10.1073/pnas.2023051118.
10

引用本文的文献

1
Conformational Analysis and Structure-Altering Mutations of the HIV-1 Frameshifting Element.
Int J Mol Sci. 2025 Jun 30;26(13):6297. doi: 10.3390/ijms26136297.
3
Tick-borne flavivirus exoribonuclease-resistant RNAs contain a double loop structure.
Nat Commun. 2025 May 15;16(1):4515. doi: 10.1038/s41467-025-59657-7.
4
Identifying the interactions conferring functional mechanical rigidity on RNase-resistant RNA from Zika virus.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2417234122. doi: 10.1073/pnas.2417234122. Epub 2025 Mar 10.
5
Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting.
Int J Mol Sci. 2025 Feb 3;26(3):1294. doi: 10.3390/ijms26031294.
6
A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements.
Biochemistry. 2025 Feb 18;64(4):953-966. doi: 10.1021/acs.biochem.4c00641. Epub 2025 Feb 5.
7
Complex Water Networks Visualized through 2.2-2.3 Å Cryogenic Electron Microscopy of RNA.
bioRxiv. 2025 Jan 24:2025.01.23.634578. doi: 10.1101/2025.01.23.634578.
8
Heterogeneous and multiple conformational transition pathways between pseudoknots of the SARS-CoV-2 frameshift element.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2417479122. doi: 10.1073/pnas.2417479122. Epub 2025 Jan 24.
9
CParty: hierarchically constrained partition function of RNA pseudoknots.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae748.
10
Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition.
RNA Biol. 2024 Jan;21(1):1-18. doi: 10.1080/15476286.2024.2433830. Epub 2024 Dec 4.

本文引用的文献

1
Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome.
Science. 2021 Jun 18;372(6548):1306-1313. doi: 10.1126/science.abf3546. Epub 2021 May 13.
2
De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures.
Nucleic Acids Res. 2021 Apr 6;49(6):3092-3108. doi: 10.1093/nar/gkab119.
3
SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo.
Science. 2020 Dec 18;370(6523):1464-1468. doi: 10.1126/science.abe8499. Epub 2020 Nov 12.
4
Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy.
Nucleic Acids Res. 2020 Dec 16;48(22):12415-12435. doi: 10.1093/nar/gkaa1013.
5
Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements.
Nucleic Acids Res. 2020 Dec 16;48(22):12436-12452. doi: 10.1093/nar/gkaa1053.
6
Targeting the SARS-CoV-2 RNA Genome with Small Molecule Binders and Ribonuclease Targeting Chimera (RIBOTAC) Degraders.
ACS Cent Sci. 2020 Oct 28;6(10):1713-1721. doi: 10.1021/acscentsci.0c00984. Epub 2020 Sep 30.
7
Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity.
Nature. 2020 Nov;587(7835):657-662. doi: 10.1038/s41586-020-2601-5. Epub 2020 Jul 29.
8
Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures.
Nat Methods. 2020 Jul;17(7):699-707. doi: 10.1038/s41592-020-0878-9. Epub 2020 Jul 2.
9
Inhibition of expression with antisense LNA gapmers as a therapy for facioscapulohumeral muscular dystrophy.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16509-16515. doi: 10.1073/pnas.1909649117. Epub 2020 Jun 29.
10
Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2).
J Biol Chem. 2020 Jul 31;295(31):10741-10748. doi: 10.1074/jbc.AC120.013449. Epub 2020 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验