Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States.
Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, United States.
ACS Chem Biol. 2021 Sep 17;16(9):1709-1720. doi: 10.1021/acschembio.1c00423. Epub 2021 Aug 25.
Motivated by the growing importance of single fluorescent protein biosensors (SFPBs) in biological research and the difficulty in rationally engineering these tools, we sought to increase the rate at which SFPB designs can be optimized. SFPBs generally consist of three components: a circularly permuted fluorescent protein, a ligand-binding domain, and linkers connecting the two domains. In the absence of predictive methods for biosensor engineering, most designs combining these three components will fail to produce allosteric coupling between ligand binding and fluorescence emission. While methods to construct diverse libraries with variation in the site of GFP insertion and linker sequences have been developed, the remaining bottleneck is the ability to test these libraries for functional biosensors. We address this challenge by applying a massively parallel assay termed "sort-seq," which combines binned fluorescence-activated cell sorting, next-generation sequencing, and maximum likelihood estimation to quantify the brightness and dynamic range for many biosensor variants in parallel. We applied this method to two common biosensor optimization tasks: the choice of insertion site and optimization of linker sequences. The sort-seq assay applied to a maltose-binding protein domain-insertion library not only identified previously described high-dynamic-range variants but also discovered new functional insertion sites with diverse properties. A sort-seq assay performed on a pyruvate biosensor linker library expressed in mammalian cell culture identified linker variants with substantially improved dynamic range. Machine learning models trained on the resulting data can predict dynamic range from linker sequences. This high-throughput approach will accelerate the design and optimization of SFPBs, expanding the biosensor toolbox.
受单荧光蛋白生物传感器(SFPB)在生物研究中的重要性日益增加以及对这些工具进行合理工程设计的难度的推动,我们试图提高 SFPB 设计的优化速度。SFPB 通常由三个组件组成:环化荧光蛋白、配体结合域和连接两个域的接头。在缺乏生物传感器工程预测方法的情况下,将这三个组件组合在一起的大多数设计都无法产生配体结合和荧光发射之间的变构偶联。虽然已经开发出了用于 GFP 插入和接头序列变异的多样化文库构建方法,但仍然存在的瓶颈是测试这些文库的功能性生物传感器的能力。我们通过应用一种称为“sort-seq”的大规模并行测定方法来解决这个挑战,该方法结合了分箱荧光激活细胞分选、下一代测序和最大似然估计,以并行定量许多生物传感器变体的亮度和动态范围。我们将这种方法应用于两个常见的生物传感器优化任务:插入位点的选择和接头序列的优化。应用于麦芽糖结合蛋白域插入文库的 sort-seq 测定法不仅鉴定了先前描述的高动态范围变体,而且还发现了具有不同特性的新功能插入位点。在哺乳动物细胞培养中表达的丙酮酸生物传感器接头文库上进行的 sort-seq 测定法鉴定出了具有大大改善的动态范围的接头变体。基于所得数据训练的机器学习模型可以从接头序列预测动态范围。这种高通量方法将加速 SFPB 的设计和优化,扩展生物传感器工具包。