Suppr超能文献

一种基于 Sort-Seq 技术的单荧光蛋白生物传感器的开发方法。

A Sort-Seq Approach to the Development of Single Fluorescent Protein Biosensors.

机构信息

Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States.

Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, United States.

出版信息

ACS Chem Biol. 2021 Sep 17;16(9):1709-1720. doi: 10.1021/acschembio.1c00423. Epub 2021 Aug 25.

Abstract

Motivated by the growing importance of single fluorescent protein biosensors (SFPBs) in biological research and the difficulty in rationally engineering these tools, we sought to increase the rate at which SFPB designs can be optimized. SFPBs generally consist of three components: a circularly permuted fluorescent protein, a ligand-binding domain, and linkers connecting the two domains. In the absence of predictive methods for biosensor engineering, most designs combining these three components will fail to produce allosteric coupling between ligand binding and fluorescence emission. While methods to construct diverse libraries with variation in the site of GFP insertion and linker sequences have been developed, the remaining bottleneck is the ability to test these libraries for functional biosensors. We address this challenge by applying a massively parallel assay termed "sort-seq," which combines binned fluorescence-activated cell sorting, next-generation sequencing, and maximum likelihood estimation to quantify the brightness and dynamic range for many biosensor variants in parallel. We applied this method to two common biosensor optimization tasks: the choice of insertion site and optimization of linker sequences. The sort-seq assay applied to a maltose-binding protein domain-insertion library not only identified previously described high-dynamic-range variants but also discovered new functional insertion sites with diverse properties. A sort-seq assay performed on a pyruvate biosensor linker library expressed in mammalian cell culture identified linker variants with substantially improved dynamic range. Machine learning models trained on the resulting data can predict dynamic range from linker sequences. This high-throughput approach will accelerate the design and optimization of SFPBs, expanding the biosensor toolbox.

摘要

受单荧光蛋白生物传感器(SFPB)在生物研究中的重要性日益增加以及对这些工具进行合理工程设计的难度的推动,我们试图提高 SFPB 设计的优化速度。SFPB 通常由三个组件组成:环化荧光蛋白、配体结合域和连接两个域的接头。在缺乏生物传感器工程预测方法的情况下,将这三个组件组合在一起的大多数设计都无法产生配体结合和荧光发射之间的变构偶联。虽然已经开发出了用于 GFP 插入和接头序列变异的多样化文库构建方法,但仍然存在的瓶颈是测试这些文库的功能性生物传感器的能力。我们通过应用一种称为“sort-seq”的大规模并行测定方法来解决这个挑战,该方法结合了分箱荧光激活细胞分选、下一代测序和最大似然估计,以并行定量许多生物传感器变体的亮度和动态范围。我们将这种方法应用于两个常见的生物传感器优化任务:插入位点的选择和接头序列的优化。应用于麦芽糖结合蛋白域插入文库的 sort-seq 测定法不仅鉴定了先前描述的高动态范围变体,而且还发现了具有不同特性的新功能插入位点。在哺乳动物细胞培养中表达的丙酮酸生物传感器接头文库上进行的 sort-seq 测定法鉴定出了具有大大改善的动态范围的接头变体。基于所得数据训练的机器学习模型可以从接头序列预测动态范围。这种高通量方法将加速 SFPB 的设计和优化,扩展生物传感器工具包。

相似文献

1
A Sort-Seq Approach to the Development of Single Fluorescent Protein Biosensors.
ACS Chem Biol. 2021 Sep 17;16(9):1709-1720. doi: 10.1021/acschembio.1c00423. Epub 2021 Aug 25.
2
Rapid construction of metabolite biosensors using domain-insertion profiling.
Nat Commun. 2016 Jul 29;7:12266. doi: 10.1038/ncomms12266.
3
Development of an miRFP680-Based Fluorescent Calcium Ion Biosensor Using End-Optimized Transposons.
ACS Sens. 2024 Jun 28;9(6):3394-3402. doi: 10.1021/acssensors.4c00727. Epub 2024 Jun 1.
4
A bacteria colony-based screen for optimal linker combinations in genetically encoded biosensors.
BMC Biotechnol. 2011 Nov 10;11:105. doi: 10.1186/1472-6750-11-105.
5
Sort-Seq Approach to Engineering a Formaldehyde-Inducible Promoter for Dynamically Regulated Escherichia coli Growth on Methanol.
ACS Synth Biol. 2017 Aug 18;6(8):1584-1595. doi: 10.1021/acssynbio.7b00114. Epub 2017 May 9.
10
Displaced by Deceivers: Prevention of Biosensor Cross-Talk Is Pivotal for Successful Biosensor-Based High-Throughput Screening Campaigns.
ACS Synth Biol. 2019 Aug 16;8(8):1847-1857. doi: 10.1021/acssynbio.9b00149. Epub 2019 Jul 23.

引用本文的文献

2
A genetically encoded fluorescent biosensor for visualization of acetyl-CoA in live cells.
Cell Chem Biol. 2025 Feb 20;32(2):325-337.e10. doi: 10.1016/j.chembiol.2025.01.002. Epub 2025 Jan 27.
3
Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals.
Chem Rev. 2024 Nov 27;124(22):12573-12660. doi: 10.1021/acs.chemrev.4c00293. Epub 2024 Nov 13.
4
Development of an miRFP680-Based Fluorescent Calcium Ion Biosensor Using End-Optimized Transposons.
ACS Sens. 2024 Jun 28;9(6):3394-3402. doi: 10.1021/acssensors.4c00727. Epub 2024 Jun 1.
5
Next-Generation Genetically Encoded Fluorescent Biosensors Illuminate Cell Signaling and Metabolism.
Annu Rev Biophys. 2024 Jul;53(1):275-297. doi: 10.1146/annurev-biophys-030722-021359. Epub 2024 Jun 28.
6
Mammalian Genomic Manipulation with Orthogonal Bxb1 DNA Recombinase Sites for the Functional Characterization of Protein Variants.
ACS Synth Biol. 2023 Nov 17;12(11):3352-3365. doi: 10.1021/acssynbio.3c00355. Epub 2023 Nov 3.
7
Monitoring glycolytic dynamics in single cells using a fluorescent biosensor for fructose 1,6-bisphosphate.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2204407119. doi: 10.1073/pnas.2204407119. Epub 2022 Jul 26.
9
Omics-Driven Biotechnology for Industrial Applications.
Front Bioeng Biotechnol. 2021 Feb 23;9:613307. doi: 10.3389/fbioe.2021.613307. eCollection 2021.

本文引用的文献

1
Low-N protein engineering with data-efficient deep learning.
Nat Methods. 2021 Apr;18(4):389-396. doi: 10.1038/s41592-021-01100-y. Epub 2021 Apr 7.
2
Deep Dive into Machine Learning Models for Protein Engineering.
J Chem Inf Model. 2020 Jun 22;60(6):2773-2790. doi: 10.1021/acs.jcim.0c00073. Epub 2020 May 5.
4
Targeted insertional mutagenesis libraries for deep domain insertion profiling.
Nucleic Acids Res. 2020 Jan 24;48(2):e11. doi: 10.1093/nar/gkz1110.
5
Unified rational protein engineering with sequence-based deep representation learning.
Nat Methods. 2019 Dec;16(12):1315-1322. doi: 10.1038/s41592-019-0598-1. Epub 2019 Oct 21.
6
Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics.
Nat Methods. 2019 Nov;16(11):1176-1184. doi: 10.1038/s41592-019-0583-8. Epub 2019 Oct 14.
7
Machine learning-assisted directed protein evolution with combinatorial libraries.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8852-8858. doi: 10.1073/pnas.1901979116. Epub 2019 Apr 12.
8
Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks.
Chem Rev. 2018 Dec 26;118(24):11707-11794. doi: 10.1021/acs.chemrev.8b00333. Epub 2018 Dec 14.
9
Learned protein embeddings for machine learning.
Bioinformatics. 2018 Aug 1;34(15):2642-2648. doi: 10.1093/bioinformatics/bty178.
10
BBMerge - Accurate paired shotgun read merging via overlap.
PLoS One. 2017 Oct 26;12(10):e0185056. doi: 10.1371/journal.pone.0185056. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验