Suppr超能文献

血浆游离脂肪酸浓度作为代谢性疾病的可调节风险因素。

Plasma Free Fatty Acid Concentration as a Modifiable Risk Factor for Metabolic Disease.

机构信息

Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Nutrients. 2021 Jul 28;13(8):2590. doi: 10.3390/nu13082590.

Abstract

Plasma free fatty acid (FFA) concentration is elevated in obesity, insulin resistance (IR), non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and related comorbidities such as cardiovascular disease (CVD). Furthermore, experimentally manipulating plasma FFA in the laboratory setting modulates metabolic markers of these disease processes. In this article, evidence is presented indicating that plasma FFA is a disease risk factor. Elevations of plasma FFA can promote ectopic lipid deposition, IR, as well as vascular and cardiac dysfunction. Typically, elevated plasma FFA results from accelerated adipose tissue lipolysis, caused by a high adipose tissue mass, adrenal hormones, or other physiological stressors. Reducing an individual's postabsorptive and postprandial plasma FFA concentration is expected to improve health. Lifestyle change could provide a significant opportunity for plasma FFA reduction. Various factors can impact plasma FFA concentration, such as chronic restriction of dietary energy intake and weight loss, as well as exercise, sleep quality and quantity, and cigarette smoking. In this review, consideration is given to multiple factors which lead to plasma FFA elevation and subsequent disruption of metabolic health. From considering a variety of medical conditions and lifestyle factors, it becomes clear that plasma FFA concentration is a modifiable risk factor for metabolic disease.

摘要

血浆游离脂肪酸(FFA)浓度在肥胖、胰岛素抵抗(IR)、非酒精性脂肪性肝病(NAFLD)、2 型糖尿病(T2D)以及相关的合并症如心血管疾病(CVD)中升高。此外,在实验室环境中实验性地操纵血浆 FFA 可以调节这些疾病过程的代谢标志物。本文提供的证据表明,血浆 FFA 是一种疾病风险因素。血浆 FFA 的升高可促进异位脂质沉积、IR 以及血管和心脏功能障碍。通常情况下,血浆 FFA 的升高是由于脂肪组织质量高、肾上腺激素或其他生理应激源导致脂肪组织脂解加速所致。降低个体的餐后和餐后血浆 FFA 浓度有望改善健康状况。生活方式的改变可能为降低血浆 FFA 提供重要机会。多种因素会影响血浆 FFA 浓度,如饮食能量摄入的慢性限制和体重减轻,以及运动、睡眠质量和数量以及吸烟。在这篇综述中,考虑了导致血浆 FFA 升高和随后代谢健康紊乱的多种因素。从考虑多种疾病状况和生活方式因素可以清楚地看出,血浆 FFA 浓度是代谢疾病的可调节风险因素。

相似文献

1
Plasma Free Fatty Acid Concentration as a Modifiable Risk Factor for Metabolic Disease.
Nutrients. 2021 Jul 28;13(8):2590. doi: 10.3390/nu13082590.
2
Crosstalk between adipose tissue insulin resistance and liver macrophages in non-alcoholic fatty liver disease.
J Hepatol. 2019 Nov;71(5):1012-1021. doi: 10.1016/j.jhep.2019.06.031. Epub 2019 Jul 10.
3
Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD?
Clin Sci (Lond). 2017 Nov 6;131(22):2701-2704. doi: 10.1042/CS20170987. Print 2017 Nov 15.
5
Sleep apnea: An overlooked cause of lipotoxicity?
Med Hypotheses. 2017 Oct;108:161-165. doi: 10.1016/j.mehy.2017.09.007. Epub 2017 Sep 13.
6
Abdominal and femoral adipose tissue lipolysis and cardiovascular disease risk factors in men.
Eur J Clin Invest. 1993 Nov;23(11):729-40. doi: 10.1111/j.1365-2362.1993.tb01293.x.
7
A new oral model of free fatty acid kinetics to assess lipolysis in subjects with and without type 2 diabetes.
Am J Physiol Endocrinol Metab. 2023 Aug 1;325(2):E163-E170. doi: 10.1152/ajpendo.00091.2023. Epub 2023 Jun 28.
9
Metabolic syndrome, hyperinsulinemia, and cancer.
Am J Clin Nutr. 2007 Sep;86(3):s867-71. doi: 10.1093/ajcn/86.3.867S.
10
Free fatty acids (FFA), a link between obesity and insulin resistance.
Front Biosci. 1998 Feb 15;3:d169-75. doi: 10.2741/a272.

引用本文的文献

1
Metabolic syndrome: molecular mechanisms and therapeutic interventions.
Mol Biomed. 2025 Aug 26;6(1):59. doi: 10.1186/s43556-025-00303-5.
4
Interventional approaches to combat obesity: Exploring the metabolomic signature of weight loss trials.
Metabol Open. 2025 Jun 24;27:100373. doi: 10.1016/j.metop.2025.100373. eCollection 2025 Sep.
5
Ultrastructural characterization of white adipocytes in a mouse model with enhanced sequestration of fatty acids in adipose tissue.
Adipocyte. 2025 Dec;14(1):2531829. doi: 10.1080/21623945.2025.2531829. Epub 2025 Jul 14.
7
Correlation of non-esterified fatty acids with acute coronary syndrome risk in young Chinese adults.
Front Endocrinol (Lausanne). 2025 Jun 6;16:1479497. doi: 10.3389/fendo.2025.1479497. eCollection 2025.
8
Induction of hyperlipidemic pancreatitis by different fatty acids: A narrative review.
World J Gastroenterol. 2025 Jun 14;31(22):106575. doi: 10.3748/wjg.v31.i22.106575.
10
Thyroid-Stimulating Hormone: An Important Target for the Prevention of Nonalcoholic Fatty Liver Disease.
Physiol Res. 2025 Apr 30;74(2):175-187. doi: 10.33549/physiolres.935453.

本文引用的文献

1
Transient elevation of triacylglycerol content in the liver: a fundamental component of the acute response to exercise.
J Appl Physiol (1985). 2021 Apr 1;130(4):1293-1303. doi: 10.1152/japplphysiol.00930.2020. Epub 2021 Jan 21.
2
Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD.
Mol Metab. 2021 Aug;50:101115. doi: 10.1016/j.molmet.2020.101115. Epub 2020 Nov 10.
3
Acute exercise in mice transiently remodels the hepatic lipidome in an intensity-dependent manner.
Lipids Health Dis. 2020 Oct 8;19(1):219. doi: 10.1186/s12944-020-01395-4.
4
Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver?
Cell Death Dis. 2020 Sep 25;11(9):802. doi: 10.1038/s41419-020-03003-w.
5
Too Much of a Good Thing? An Evolutionary Theory to Explain the Role of Ceramides in NAFLD.
Front Endocrinol (Lausanne). 2020 Jul 31;11:505. doi: 10.3389/fendo.2020.00505. eCollection 2020.
7
Rapid changes in neuroendocrine regulation may contribute to reversal of type 2 diabetes after gastric bypass surgery.
Endocrine. 2020 Feb;67(2):344-353. doi: 10.1007/s12020-020-02203-w. Epub 2020 Jan 26.
10
Sleep Apnea and Sleep Habits: Relationships with Metabolic Syndrome.
Nutrients. 2019 Nov 2;11(11):2628. doi: 10.3390/nu11112628.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验